Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Do 51 chia hết cho 3 => 5139 chia hết cho 9; 39 chia hết cho 3 => 3951 chia hết cho 9; 12 chia 9 dư 3
=> 5139 + 3951 + 12 chia 9 dư 3 => 5139 + 3951 + 12 = 9.m + 3 (m thuộc N) (1)
+ Ta có: 5139 + 3951 + 12
= ...1 + 3950.39 + 12
= ...1 + (392)25.39 + 12
= ...1 + ...125.39 + 12
= ...1 + ...1.39 + 12
= ...1 + ...9 + 12
= ...2 chia 10 dư 2 => 5139 + 3951 + 12 = 10.n + 2 (n thuộc N) (2)
Từ (1) và (2) => 9.m + 3 = 10.n + 2
=> 9.m + 1 = 10.n
=> 9.m + 1 = 9.n + n
=> 9.m - 9.n = n - 1
=> 9.(m - n) = n - 1
=> n - 1 chia hết cho 9
=> n = 9.k + 1 (k thuộc N)
=> 5139 + 3951 + 12 = 10.(9.n + 1) + 2
= 90.n + 10 + 2
= 90.n + 12 chia 90 dư 12
=> số dư trong phép chia 5139 + 3951 + 12 cho 90 là 12
+ Do 51 chia hết cho 3 => 5139 chia hết cho 9; 39 chia hết cho 3 => 3951 chia hết cho 9; 12 chia 9 dư 3
=> 5139 + 3951 + 12 chia 9 dư 3 => 5139 + 3951 + 12 = 9.m + 3 (m thuộc N) (1)
+ Ta có: 5139 + 3951 + 12
= ...1 + 3950.39 + 12
= ...1 + (392)25.39 + 12
= ...1 + ...125.39 + 12
= ...1 + ...1.39 + 12
= ...1 + ...9 + 12
= ...2 chia 10 dư 2 => 5139 + 3951 + 12 = 10.n + 2 (n thuộc N) (2)
Từ (1) và (2) => 9.m + 3 = 10.n + 2
=> 9.m + 1 = 10.n
=> 9.m + 1 = 9.n + n
=> 9.m - 9.n = n - 1
=> 9.(m - n) = n - 1
=> n - 1 chia hết cho 9
=> n = 9.k + 1 (k thuộc N)
=> 5139 + 3951 + 12 = 10.(9.n + 1) + 2
= 90.n + 10 + 2
= 90.n + 12 chia 90 dư 12
=> số dư trong phép chia 5139 + 3951 + 12 cho 90 là 12
5139 + 3951 + 12 = .....51+ ...39 + 12 = ...102
=> ...102 : 90 dư 12
Dư 2 bạn nhé.
Mình có tìm được lời giải chi tiết ở đây này. Bạn vào tham khảo thêm nhé http://pitago.vn/question/so-du-cua-513939512-chia-cho-90-35166.html
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...