K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{3}{2}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{1}{2}\)

\(\Leftrightarrow\frac{a+b+1}{ab}=\frac{1}{2}\Leftrightarrow2\left(a+b+1\right)=ab\Leftrightarrow2a+2b+2-ab=0\)

\(\Leftrightarrow2a-ab-4+2b+6=0\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)=-6\)

\(\Leftrightarrow\left(a-2\right)\left(2-b\right)=-6\)

Đến đây chắc dễ rồi

25 tháng 3 2017

Ta có:

\(\left(a+b-c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)

Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)

\(\Rightarrow2ac+2bc-2ab< 2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

20 tháng 2 2020

1 . 

Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)

Chia cả hai vế cho abc > 0 

\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)

Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)

Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)

\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)

\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)

\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)

Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)

Vậy GTNN của C là 17 khi a =2; b =1; c = 1

20 tháng 2 2020

2 . 

Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên 

\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)

\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)

\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tự ta có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)

\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)

Cộng vế theo vế (1), (2) và (3) ta được: 

\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)

Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)

\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)

Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)

Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)

Chúc bạn học tốt !!!

19 tháng 7 2021

\(P=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2-2=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\)

\(=\left(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\right)+\left(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\right)+\left(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\right)-2\)

Áp dụng BĐT AM-GM cho 3 số dương: 

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}.\frac{1}{a}.\frac{1}{a}}=\frac{3}{b}\)

\(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge3\sqrt[3]{\frac{b^2}{c^3}.\frac{1}{b}.\frac{1}{b}}=\frac{3}{c}\)

\(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge3\sqrt[3]{\frac{c^2}{a^3}.\frac{1}{c}.\frac{1}{c}}=\frac{3}{a}\)

\(\Rightarrow P\ge\frac{3}{b}+\frac{3}{c}+\frac{3}{a}-2=3-2=1\)

Dấu "=" xảy ra khi \(a=b=c=3\)

19 tháng 7 2021

Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\) thì

\(\Rightarrow\hept{\begin{cases}x+y+z=1\\P=\frac{y^3}{x^2}+\frac{z^3}{y^2}+\frac{x^3}{z^2}\end{cases}}\)

Ta có:

\(\frac{x^3}{z^2}+z+z\ge3x,\frac{y^3}{x^2}+x+x\ge3y,\frac{z^3}{y^2}+y+y\ge3z\)

\(\Rightarrow\frac{x^3}{z^2}\ge3x-2z,\frac{y^3}{x^2}\ge3y-2x,\frac{z^3}{y^2}\ge3z-2y\)

\(\Rightarrow P\ge3x-2z+3y-2x+3z-2y=x+y+z=1\)

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

6 tháng 4 2017

1 bai thoi cung dc

19 tháng 12 2016

Bạn biết BĐT Cauchy-Schwarz dạng phân thức không nhỉ?

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}=\frac{a^4}{ab+ca}+\frac{b^4}{bc+ab}+\frac{c^4}{ca+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)

Đến đây áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\) ta có

\(P\ge\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)