Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a\le b\le c=>\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}=>1+\frac{1}{a}\ge1+\frac{1}{b}\ge1+\frac{1}{c}\)
\(=>\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge3\left(1+\frac{1}{c}\right)\)
\(=>3\left(1+\frac{1}{c}\right)\le3=>1+\frac{1}{c}\le1=>\frac{1}{c}\le0=>1\le0\)
Đề sai thì phải bn à
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
Phan cả PHát - stupid lv max
Try a=3;b=8 or a=4;b=5 or a=5;b=4
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\Leftrightarrow ab+bc+ac=1\)
\(A=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow1=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).abc\Leftrightarrow1=bc+ac+ab\)
\(A=\left(bc+ac+ab+a^2\right)\left(bc+ac+ab+b^2\right)\left(bc+ac+ab+c^2\right)\)
\(A=\left[c\left(a+b\right)+a\left(a+b\right)\right]\left[c\left(a+b\right)+b\left(a+b\right)\right]\left[c\left(c+b\right)+a\left(c+b\right)\right]\)
\(A=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(A=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\frac{3}{2}\Leftrightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{3}{2}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=\frac{1}{2}\)
\(\Leftrightarrow\frac{a+b+1}{ab}=\frac{1}{2}\Leftrightarrow2\left(a+b+1\right)=ab\Leftrightarrow2a+2b+2-ab=0\)
\(\Leftrightarrow2a-ab-4+2b+6=0\Leftrightarrow a\left(2-b\right)-2\left(2-b\right)=-6\)
\(\Leftrightarrow\left(a-2\right)\left(2-b\right)=-6\)
Đến đây chắc dễ rồi