K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

\(\sin x-4\sin^3x+cosx=0\)sinx-4sin3x+cosx=0 \(\Rightarrow\) \(\frac{\text{sin x}-4\sin^3x+\cos x}{\sin x}\)=0 \(\Leftrightarrow\) 1-4sin2x+\(\frac{cosx}{sinx}\)=0\(\Leftrightarrow\)1 - \(\frac{4\tan^2x}{tan^2x+1}\)+\(\frac{1}{\tan x}\)=0 \(\Leftrightarrow\) \(\frac{\left(\tan^2x+1\right)\tan x-4\tan^3x+1}{\tan x}\) =0

\(\Rightarrow\)\(\left(\tan^2x+1\right)\tan x-4\tan^3x+1\)= 0 \(\Leftrightarrow\) \(-3\tan^2x+\tan^2x+\tan x+1\)=0 \(\Rightarrow\) tanx=1 \(\Leftrightarrow\) x=45o 

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

4 tháng 7 2019

iu a ko 

.−3sin23x−1a.−3sin23x−1

Giải thích các bước giải:

a.y′=−3.(1+cot23x)−1=−3sin23x−1b.y′=−(1+cot2x)−2=−1sin2x−2c.y′=3cosx+4.4.sinx+(1+tan2x)=3cosx+16sinx+1cos2xd.y′=5cos25xe.y′=−3.cos(π6−3x)

10 tháng 8 2019

\(\tan x=\frac{\sin x}{\cos x}=\frac{3}{5}\Rightarrow\sin x=\frac{3}{5}\cos x\)

\(\Rightarrow N=\frac{\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\sin x.\cos x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\)

\(=\frac{\frac{3}{5}.\cos^2x}{\left(\frac{3}{5}\cos x-\cos x\right)\left(\frac{3}{5}\cos x+\cos x\right)}=\frac{\frac{3}{5}\cos^2x}{\frac{-16}{25}.\cos^2x}=\frac{-15}{16}\)

NV
3 tháng 3 2020

ĐKXĐ: ...

\(\Leftrightarrow x+3-x+2\sqrt{x\left(3-x\right)}=3\)

\(\Leftrightarrow\sqrt{x\left(3-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

b/ \(2sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=2\left(l\right)\end{matrix}\right.\) \(\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{\sqrt{3}}{2}\)

\(\Rightarrow sinx.cosx=\frac{\sqrt{3}}{4}\)

30 tháng 8 2018

\(A=a^3-b^3-ab\)

   \(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)

   \(=a^2+ab+b^2-ab\) (vì \(a-b=1\))

   \(=a^2+b^2\)

   \(=a^2+\left(a-1\right)^2\)

   \(=2a^2-2a+1\)

  \(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)

  \(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)

Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)

\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)

Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)

Chúc bạn học tốt.