Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=1+2+2^2+2^3+....+2^{15}\)
\(\Rightarrow2A=2+2^2+2^3+.....+2^{16}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{16}\right)-\left(1+2+2^2+...+2^{15}\right)\)
\(\Rightarrow A=2^{16}-1\)
Câu b đêm nhân lên 3B ( tương tự)
c đêm nhân lên 4C (tương tự)
Câu
(1013-13).(1003-23)..................(23-1003).(13-1013)
=(1013-13).(1003-23).........(513-513).........(23-1003).(13-1013)
=(1013-13).(1003-23)...........0............(23-1003).(13-1013)
=0
Bài 4 :
\(D=11+11^2+11^3+...+11^{1000}\)
\(11D=11^2+11^3+11^4+...+11^{1001}\)
\(11D-D=\left(11^2+11^3+11^4+...+11^{1001}\right)-\left(11+11^2+11^3+...+11^{1000}\right)\)
\(10D=11^{1001}-11\)
\(D=\frac{11^{1001}-11}{10}\)
Vậy \(D=\frac{11^{1001}-11}{10}\)
Chúc bạn học tốt ~
Bài 1 :
\(A=1+2+2^2+....+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
Chúc bạn học tốt ~
J=6 + 16 + 30 + 48 +...+ 19600 + 19998
Chia cả 2 vế cho 2 ta được
B/2 = 3 + 8 + 15 + 24 + ......... + 98000+ 9999
B/2= 1x3+2x4+3x5+4x6+…….+98x100+99x101
B/2= 100/6[(100-1)x(2x100+1)] = 328350
-> B =328350x2=656700
K=2 + 5 + 9 + 14 + ....+ 4949 + 5049
Nhân cả 2 vế với 2 ta được
2xD=1x4+ 2x5+ 3x6+ 4x7+……..+98x101+99x102
2xD = 1(2+2)+2(3+2)+3(4+2)+...+99(100+2)
2xD = 1x2+1x2+2x3+2x2+3x4+3x2+...+99x100+99x2
2xD= (1x2+2x3+3x4+...+99x100)+2(1+2+3+...+99)
2xD = 333300 + 9900 = 343200
-> D= 343200 :2 =171600
Biểu thức M bạn kiểm tra lại
S= 1 + 2 + 22 +...+ 22017
=>2S= 2( 1 + 2 + 22 +...+ 22017)
2S= 2 + 22 + 23 + 22018
=>2S-S=(2 + 22 + 23 +...+ 22018) - (1 + 2 + 22 +....+ 22017)
S= 22018 - 1
Kết luận : Vậy S= 22018 - 1