Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(\Rightarrow4D=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D< 3-\frac{203}{3^{100}}< 3\Rightarrow D< \frac{3}{4}\left(ĐPCM\right)\)
Gọi B=(1+3+3^2+3^3+..+3^100)
=>3B = 3^1 + 3^2 + 3^3 + 3^4 +...+ 3^100 + 3^101
=>3B - B = ( 3^1 + 3^2 + 3^3 + 3^4 +...+ 3^100 + 3^101 ) - ( 1 + 3 + 3^2 + 3^3 +...+ 3^100 )
=> 2B = 3^101 - 3
=>B= 3^101 - 3
_______
2
=>S= 3^101 - 3^101 - 3
_______
2
(1013-13).(1003-23)..................(23-1003).(13-1013)
=(1013-13).(1003-23).........(513-513).........(23-1003).(13-1013)
=(1013-13).(1003-23)...........0............(23-1003).(13-1013)
=0
0000000000000