Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)}{a-4}-\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-4}-\frac{4\sqrt{a}-4}{a-4}\)
\(=\frac{a+5\sqrt{a}+6-\left(a-3\sqrt{a}+2\right)-\left(4\sqrt{a}-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{a+5\sqrt{a}+6-a+3\sqrt{a}-2-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{4\sqrt{a}+8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\frac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\frac{4}{\sqrt{a}-2}\)
P= (\(\frac{3\sqrt{a}}{\sqrt{a}+4}+\frac{\sqrt{a}}{\sqrt{a}-4}+\frac{4\left(a+2\right)}{16-a}\)):\(\left(1-\frac{2\sqrt{a}+5}{\sqrt{a}-4}\right)\)
=\(\left(\frac{3\sqrt{a}\left(\sqrt{a}-4\right)}{a-16}+\frac{\sqrt{a}\left(\sqrt{a}+4\right)}{a-16}-\frac{4a+8}{a-16}\right):\left(\frac{\sqrt{a}-4-2\sqrt{a}-5}{\sqrt{a}-4}\right)\)
= \(\left(\frac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{a-16}\right):\left(\frac{-\sqrt{a}-9}{\sqrt{a}-4}\right)\)
=\(\left(\frac{-8\sqrt{a}-8}{a-16}\right).\left(\frac{\sqrt{a}-4}{-\sqrt{a}-9}\right)=\frac{8\sqrt{a}+8}{\left(\sqrt{a}+4\right).\left(\sqrt{a}+9\right)}=\frac{8\sqrt{a}+8}{a+13\sqrt{a}+36}\)
Q = \(\frac{\sqrt{a}+3}{\sqrt{a}-2}\)- \(\frac{\sqrt{a}-1}{\sqrt{a}+2}\)+ \(\frac{4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)+4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
=\(\frac{a+5\sqrt{a}+6-a+3\sqrt{a}-2+4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{8+4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
= \(\frac{4}{\sqrt{a}-2}\)
\(Q=\frac{\sqrt{a+3}}{\sqrt{a-2}}-\frac{\sqrt{a-1}}{\sqrt{a+2}}+\frac{4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{\left(\sqrt{a+3}\right)\left(\sqrt{a+2}\right)-\left(\sqrt{a-1}\right)\left(\sqrt{a-2}\right)+4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{a+5\sqrt{a}+6-a+3\sqrt{a-2}+4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{8+4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{4\left(\sqrt{a+2}\right)}{\left(\sqrt{a+2}\right)\left(\sqrt{a-2}\right)}\)
\(Q=\frac{4}{\sqrt{a-2}}\)
\(P=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\left(\sqrt{a}+4\right)}\)
\(=\dfrac{-8\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+4\right)\left(\sqrt{a}-4\right)}\cdot\dfrac{\sqrt{a}+4}{-\left(\sqrt{a}+1\right)}=\dfrac{8}{\sqrt{a}-4}\)
\(P=\frac{\sqrt{\left(\sqrt{a-4}\right)^2+2.2.\sqrt{a-4}+4}+\sqrt{\left(\sqrt{a-4}\right)^2-2.2.\sqrt{a-4}+4}}{\sqrt{1^2-2.\frac{4}{a}}+\frac{4^2}{a^2}}\)
=\(\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
=\(\frac{|\sqrt{a-4}+2|+|\sqrt{a-4}-2|}{|1-\frac{4}{a}|}\)
=\(\frac{a-4+2+a-4-2}{1-\frac{4}{a}}\)
=\(\frac{2a-8}{\frac{a-4}{a}}\)
=\(\frac{2.\left(a-4\right)}{\frac{a-4}{a}}\)
=\(2.\left(a-4\right).\frac{a}{a-4}\)
=2a
(ĐKXĐ: a khác 4)
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
a) ĐK: \(a\ge4\)
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{\left|1-\frac{4}{a}\right|}\)
\(=\frac{\sqrt{a-4}+2+\left|\sqrt{a-4}-2\right|}{1-\frac{4}{a}}\)
Nếu \(4\le a< 8\)thì: \(P=\frac{\sqrt{a-4}+2+2-\sqrt{a-4}}{1-\frac{4}{a}}=\frac{4}{\frac{a-4}{a}}=\frac{4a}{a-4}\)
Nếu \(a\ge8\)thì: \(P=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}=\frac{2\sqrt{a-4}}{\frac{a-4}{a}}=\frac{2a\sqrt{a-4}}{a-4}\)
ĐKXĐ: \(a-4\ne0\Leftrightarrow x\ne4\)
\(\frac{a-4\sqrt{a}+4}{a-4}=\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}-2\right).\left(\sqrt{a}+2\right)}=\frac{\sqrt{a}-2}{\sqrt{a}+2}\)
ĐK \(a\ne4\)
\(\frac{a-4\sqrt{a}+4}{a-4}=\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\frac{\sqrt{a}-2}{\sqrt{a}+2}\)