Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
a) ĐK: \(a\ge4\)
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{\left|1-\frac{4}{a}\right|}\)
\(=\frac{\sqrt{a-4}+2+\left|\sqrt{a-4}-2\right|}{1-\frac{4}{a}}\)
Nếu \(4\le a< 8\)thì: \(P=\frac{\sqrt{a-4}+2+2-\sqrt{a-4}}{1-\frac{4}{a}}=\frac{4}{\frac{a-4}{a}}=\frac{4a}{a-4}\)
Nếu \(a\ge8\)thì: \(P=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}=\frac{2\sqrt{a-4}}{\frac{a-4}{a}}=\frac{2a\sqrt{a-4}}{a-4}\)
Rút Gọn:
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{4}{x}-1}\)
\(=\frac{2\sqrt{x-4}}{\frac{4-x}{x}}\)
\(=-\frac{2x\sqrt{x-4}}{x-4}\)
\(=\frac{-2x}{\sqrt{x-4}}\)
\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\left(x>4\right)\)( mình có sửa lại đề 1 chút)
\(\Leftrightarrow P=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{x}\right)^2}}=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|1-\frac{4}{x}\right|}\)
\(=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{\left|\frac{x-4}{x}\right|}\)
nếu 4<x=<8 thì P=\(\frac{4x}{x-4}\)
nếu x>8 thì P=\(\frac{2x}{\sqrt{x-4}}\)
xét P=\(\frac{4x}{x-4}=4+\frac{16}{x-4}\left(x\inℤ\right)\)
P\(\inℤ\)<=> x-4 là ước của 16 và 4<x=<8 \(\Leftrightarrow x=5;6;8\)
xét P=\(\frac{2x}{\sqrt{x-4}}\left(x\inℤ;x>8\right)\left(1\right)\)
với x \(\inℤ\Rightarrow\sqrt{x-4}\)là số vô tỷ hoặc \(\sqrt{x-4}\inℤ\)
do đó từ (1) => \(P\inℤ\Rightarrow\sqrt{x-4}\inℤ\Leftrightarrow\sqrt{x-4}=a\left(a\inℤ;a>2\right)\)
\(\Rightarrow a^2=\frac{2\left(a^2+4\right)}{a}=2a+\frac{8}{a}\left(a\inℤ;a>2\right)\left(2\right)\)
từ (2) => \(P\inℤ\Rightarrow\frac{8}{x}\inℤ\)<=> a là ước của 8 và a>2
<=> a={4;8} => x=20;x=68
vậy x={5;6;8;20;68}
\(P=\frac{\sqrt{\left(\sqrt{a-4}\right)^2+2.2.\sqrt{a-4}+4}+\sqrt{\left(\sqrt{a-4}\right)^2-2.2.\sqrt{a-4}+4}}{\sqrt{1^2-2.\frac{4}{a}}+\frac{4^2}{a^2}}\)
=\(\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
=\(\frac{|\sqrt{a-4}+2|+|\sqrt{a-4}-2|}{|1-\frac{4}{a}|}\)
=\(\frac{a-4+2+a-4-2}{1-\frac{4}{a}}\)
=\(\frac{2a-8}{\frac{a-4}{a}}\)
=\(\frac{2.\left(a-4\right)}{\frac{a-4}{a}}\)
=\(2.\left(a-4\right).\frac{a}{a-4}\)
=2a
(ĐKXĐ: a khác 4)