K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

a) ( x + y)( x^2 - xy+  y^2 )- ( x - y)( x^2 + xy + y^2 )

= x^3 +y^3 - ( x^3 - y^3 )

= x^3 + y^3 - x^3 + y^3 

= 2y^3 

b; ( x - y)^2 + ( x + y)^2

= x^2 - 2xy + y^2 + x^2 + 2xy + y^2

= 2x^2 + 2y^2 

11 tháng 6 2019

Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)

\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

11 tháng 6 2019

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)

\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)

\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)

\(=25x^2+45x+15+8+10x-40x-50x^2\)

\(=-25x^2+15x+23\)

\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

26 tháng 2 2020

d, Ta có : \(\frac{x^3+4x^2-x-4}{x+4}\)

\(=\frac{x^2\left(x+4\right)-\left(x+4\right)}{x+4}=\frac{\left(x^2-1\right)\left(x+4\right)}{x+4}=x^2-1\)

- Thay \(x=-2\frac{1}{3}\) vào biểu thức trên ta được :

\(\left(-2\frac{1}{3}\right)^2-1=\frac{58}{9}\)

Vậy biểu thức có giá trị là \(\frac{58}{9}\) tại \(x=-2\frac{1}{3}\)