\(\frac{1^4+4}{5^4+4}\)X  \(\frac{5^4+4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

Ta có : \(n^4+4=\left[\left(n-1\right)^2+1\right]\left[\left(n+1\right)^2+1\right]\)

Do đó :

\(M=\frac{1\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\frac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.\frac{\left(8^2+1\right)\left(10^2+1\right)}{\left(10^2+1\right)\left(12^2+1\right)}...\frac{\left(16^2+1\right)\left(18^2+1\right)}{\left(18^2+1\right)\left(20^2+1\right)}\)

\(M=\frac{1}{20^2+1}=\frac{1}{401}\)

22 tháng 7 2019

quá đơn giản , phân tích thành nhân tử rồi làm thôi

22 tháng 7 2019

tao biết làm r

8 tháng 8 2020

Bạn viết biểu thức A ra đi rồi bọn mình mới làm được chứ -.-

8 tháng 8 2020

Đk : \(x\ne\pm3\)

Để B>A

\(\Leftrightarrow\frac{3}{x+3}>4\)

Rõ ràng: \(x+3>0\)

\(\Rightarrow\frac{3}{x+3}>4\)

\(\Leftrightarrow3>4\left(x+3\right)\)

\(\Leftrightarrow3>4x+12\)

\(\Leftrightarrow-9>4x\)

\(\Leftrightarrow x< \frac{-9}{4}\)

KL: \(x\in Z,x< \frac{-9}{4},x\ne\pm3\)

4 tháng 7 2017

a. A=\(1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(=1+\left(\frac{x+1+x+1-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right).\frac{x\left(x^2-x+1\right)}{x^2\left(x-2\right)}\)

\(=1+\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(=1+\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)

b.\(\left|x-\frac{3}{4}\right|=\frac{5}{4}\Rightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)

Với \(x=2\Rightarrow A=\frac{2-1}{2+1}=\frac{1}{3}\)

Với \(x=-\frac{1}{2}\Rightarrow A=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)

a) Ta có: \(\frac{3x-2}{6}-\frac{4-3x}{18}=\frac{4-x}{9}\)

\(\Leftrightarrow\frac{3\left(3x-2\right)}{18}-\frac{4-3x}{18}-\frac{2\left(4-x\right)}{18}=0\)

\(\Leftrightarrow9x-6-4+3x-\left(8-2x\right)=0\)

\(\Leftrightarrow12x-10-8+2x=0\)

\(\Leftrightarrow10x-18=0\)

\(\Leftrightarrow10x=18\)

hay \(x=\frac{9}{5}\)

Vậy: \(x=\frac{9}{5}\)

b) Ta có: \(\frac{2+3x}{6}-x+2=\frac{x-7}{9}\)

\(\Leftrightarrow\frac{3\left(2+3x\right)}{18}-\frac{18x}{18}+\frac{36}{18}-\frac{2\left(x-7\right)}{18}=0\)

\(\Leftrightarrow6+9x-18x+36-\left(2x-14\right)=0\)

\(\Leftrightarrow42-9x-2x+14=0\)

\(\Leftrightarrow56-11x=0\)

\(\Leftrightarrow11x=56\)

hay \(x=\frac{56}{11}\)

Vậy: \(x=\frac{56}{11}\)

c) ĐKXĐ: x∉{3;-3}

Ta có: \(\frac{6-x}{x^2-9}+\frac{2}{x+3}=\frac{-5}{x-3}\)

\(\Leftrightarrow\frac{6-x}{\left(x-3\right)\left(x+3\right)}+\frac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow6-x+2x-6=-5x-15\)

\(\Leftrightarrow x+5x+15=0\)

\(\Leftrightarrow6x=-15\)

hay \(x=\frac{-5}{2}\)(tm)

Vậy: \(x=\frac{-5}{2}\)

d) Ta có: \(\left(5x+2\right)\left(x^2-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x^2-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-2\\x^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{5}\\x=\pm\sqrt{7}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-2}{5};\sqrt{7};-\sqrt{7}\right\}\)

e) ĐKXĐ: x∉{4;-4}

Ta có: \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)

\(\Leftrightarrow\frac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}+\frac{5x-2}{\left(x-4\right)\left(x+4\right)}-\frac{4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)

\(\Leftrightarrow3x+12+5x-2-\left(4x-16\right)=0\)

\(\Leftrightarrow8x+10-4x+16=0\)

\(\Leftrightarrow4x+26=0\)

\(\Leftrightarrow4x=-26\)

hay \(x=\frac{-13}{2}\)(tm)

Vậy: \(x=\frac{-13}{2}\)