Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+23+...+263
2A=2+22+23+...+263+264
\(-\)
\(A=1+2+2^2+....+2^{63}\)
\(A=2^{64}-1\)
Vậy A=264-1
a)
A = 2 + 22 + 23 + 24 + .... +299 + 2100
2A = 22 + 23 + 24 + 25 + ... + 2100 + 2101
2A - A = A = 2101 - 2
vậy A = 2101 - 2
b)
B = 1 + 2 + 22 + 23 + ... + 22017
2B = 2 + 22 + 23 + 24 + ... + 22018
2B - B = B = 22018 - 1
Vậy B = 22018 - 1
c)
C = 2 + 23 + 25 + ... + 22017
4C = 23 + 25 + 27 + ... + 22019
4C - C = 3C = 22019 - 2
C = \(\frac{2^{2019}-2}{3}\)
d)
D = 2 + 24 + 27 + ... + 22017
8D = 24 + 27 + 210 + ... + 22020
8D - D = 7D = 22020 - 2
D = \(\frac{2^{2020}-2}{7}\)
Ta có : M = -1 + 2 - 22 + 23 - 24 + ... - 22012
2M = -2 + 22 - 23 + .... - 22013
2M + M = ( -1 + 2 - 22 + 23 - 24 + ... - 22012 ) + ( -2 + ... - 22013 )
3M = - ( 22013 + 1 )
M = - ( 22013 + 1 ) / 3
A= 1/2+1/22+1/23+1/24+.....+1/22019
2A= 1+1/2+1/22+1/23+1/24+.....+1/22018
2A-A=(1+1/2+1/22+1/23+1/24+.....+1/22018)-(1/2+1/22+1/23+1/24+.....+1/22019)
A=1-1/22019
1/
= -10 - ( -10) - 75 + 4
= 0 - 75 + 4
= -71
2/ (-5)^2 : (-5) = -5
3/ \(\Leftrightarrow\orbr{\begin{cases}n+1< 0\\n+3< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n>-1\\n>-3\end{cases}}\)
a) -10 - (-10) + 75 : (-1)3 + (-2)3 : (-2)
= -10 + 10 + 75 : (-1) + (-8) : (-2)
= 0 + (-75) + 4
= 0 - 75 + 4
= -71
b) E = (-52) : (-5)
E = (-25) : (-5)
E = 5
c) (n + 1)(n + 3) < 0
=> \(\hept{\begin{cases}n+1< 0\\n+3>0\end{cases}}\Rightarrow\hept{\begin{cases}n< -1\\n>-3\end{cases}}\Rightarrow-3< n< -1\)
Hoặc \(\hept{\begin{cases}n+1>0\\n+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}n>-1\\n< -3\end{cases}}\)(Loại)
Vậy -3 < n < -1
phần b tương tự phần a nên em làm câu a và c thôi :
a, \(M=1-2+2^2-2^3+...+2^{2012}\)
\(2M=2-2^2+2^3-2^4+...+2^{2013}\)
\(3M=2^{2013}+1\)
\(M=\frac{2^{2013}+1}{3}\)
c, \(E=2^{100}-2^{99}-2^{98}-...-1\)
\(E=2^{100}-\left(2^{99}+2^{98}+...+1\right)\)
đặt \(A=2^{99}+2^{98}+...+1\)
\(2A=2^{100}+2^{98}+...+2\)
\(2A-A=2^{100}-1\) hay \(A=2^{100}-1\)
ta có :
\(E=2^{100}-\left(2^{100}-1\right)\)
\(E=2^{100}-2^{100}+1=1\)
b,
\(A=1+2+2^2+2^3+...+2^{50}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{51}-1+2+2^2+...+2^{50}\)
\(\Rightarrow A=2^{51}-1\)
A=2+2^2+2^3+2^4+2^5+...+2^10
2A=2^2+2^3+2^4+2^5+...+2^10+2^11
A=2^11-2
Xong