Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+2^2+2^3+2^4+2^5+...+2^10
2A=2^2+2^3+2^4+2^5+...+2^10+2^11
A=2^11-2
Xong
A= 1/2+1/22+1/23+1/24+.....+1/22019
2A= 1+1/2+1/22+1/23+1/24+.....+1/22018
2A-A=(1+1/2+1/22+1/23+1/24+.....+1/22018)-(1/2+1/22+1/23+1/24+.....+1/22019)
A=1-1/22019
N = 3 - 32 - 33 - 34 - ...... - 31999 - 32000
3N = 32 - 33 - 34 - ...... - 31999 - 32000 - 32001
3N - N = (32 - 33 - 34 - ...... - 31999 - 32000 - 32001) - (3 - 32 - 33 - 34 - ...... - 31999 - 32000)
2N = 32 - 33 - 34 - ...... - 31999 - 32000 - 32001 - 3 + 32 + 33 + 34 + ..... + 31999 + 32000
2N = 32 + 32 - 3 - 32001
2N = 15 - 32001
N = \(\frac{15-3^{2001}}{2}\)
Đặt \(D=1^2+2^2+3^2+...+2018^2\)
\(D=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+2018\left(2019-1\right)\)
\(D=1.2-1+2.3-2+3.4-3+...+2018.2019-2018\)
\(D=\left(1.2+2.3+...+2018.2019\right)-\left(1+2+3+...+2018\right)\)
Đặt \(A=1.2+2.3+...+2018.2019\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+...+2018.2019\left(2020-2017\right)\)
\(\Rightarrow3A=2018.2019.2010\Rightarrow A=\frac{2018.2019.2020}{3}\)
Đặt \(B=1+2+3+...+2018\)
\(B=\frac{\left(2018+1\right)\left(2018-1+1\right)}{2}=\frac{2019.2018}{2}\)
\(\Rightarrow D=A+B=\frac{2018.2019.2020}{3}+\frac{2019.2018}{2}\)
\(\Rightarrow D=\frac{2018.2019.2020.2+2019.2018.3}{6}\)
\(\frac{2^7.91-2^6.20}{3^3.12+3^4.28}=\frac{2^6.2.91-2^6.20}{3^3.12+3^3.3.28}=\frac{2^6.189-2^6.20}{3^3.12+3^3.84}=\frac{2^6.\left(189-20\right)}{3^3.\left(12+84\right)}=\frac{2^6.169}{3^3.96}\)
A=1+2+22+23+...+263
2A=2+22+23+...+263+264
\(-\)
\(A=1+2+2^2+....+2^{63}\)
\(A=2^{64}-1\)
Vậy A=264-1
x^3 + 2^5 + 3^6 = x^3 + 761
Phạm Ngọc Thạch sao làm lạ vậy