Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2-m^2\geq 0$
$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$
$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)
Khi đó:
$(x_1-x_2)^2+6m=x_1-2x_2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$
$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$
$\Leftrightarrow 4m-6=3x_2$
$\Leftrightarrow x_2=\frac{4}{3}m-2$
$x_1=2(m-1)-x_2=\frac{2}{3}m$
Suy ra:
$x_1x_2=m^2$
$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$
$\Leftrightarrow m(8m-12-9m)=0$
$\Leftrightarrow m(-m-12)=0$
$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Bài 4:
Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$
$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)
Khi đó:
$2x_1^2+4mx_2+2m^2-1\geq 0$
$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$
$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$
$\Leftrightarrow 4m. 2\geq 0$
$\Leftrightarrow m\geq 0$
Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.
\(\Delta=9-4\left(m-1\right)=13-4m\ge0\Rightarrow m\le\frac{13}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^5-x_1+32x_2^5-x_2=3\)
\(\Leftrightarrow x_1^5+\left(2x_2\right)^5+3=3\)
\(\Leftrightarrow x_1^5=-\left(2x_2\right)^5\)
\(\Rightarrow x_1=-2x_2\)
Kết hợp Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1=-2x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-6\\x_2=3\end{matrix}\right.\)
Mà \(x_1x_2=m-1\Rightarrow m-1=-18\Rightarrow m=-17\)
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=-4m+5>0\Rightarrow m< \frac{5}{4}\)
\(\left(x_1+x_2\right)^2-4x_1x_2=x_1+x_2-4x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=2m-1-4x_2\)
\(\Rightarrow4x_2=6m-6\Rightarrow x_2=\frac{3m-3}{2}\)
\(\Rightarrow x_1=2m-1-x_2=\frac{m+1}{2}\)
\(x_1x_2=m^2-1\Rightarrow\frac{3\left(m-1\right)\left(m+1\right)}{4}=m^2-1\)
\(\Leftrightarrow\frac{3}{4}\left(m^2-1\right)=m^2-1\)
\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\)
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
Theo hệ thức Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m^2+m+3\end{cases}}\)
Viết lại : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2}{x_1.x_2}-2=\frac{4\left(m+2\right)^2}{m^2+m+3}-2=4\)
\(\Leftrightarrow\frac{4\left(m+2\right)^2}{m^2+m+3}=6\Leftrightarrow4\left(m^2+4m+4\right)=6\left(m^2+m+3\right)\Leftrightarrow m^2-5m+1=0\Leftrightarrow m=\frac{5-\sqrt{21}}{2}\)hoặc \(m=\frac{5+\sqrt{21}}{2}\)
Vậy \(m\in\left\{\frac{5-\sqrt{21}}{2};\frac{5+\sqrt{21}}{2}\right\}\)
Bạn tham khảo:
Câu hỏi của Đặng Ngọc Du - Toán lớp 9 | Học trực tuyến