Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=\left(x^2+z^2-2xz\right)-\left(y^2+t^2-2yt\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z-y+t\right)\left(x-z+y-t\right)\)
x2-y2+z2-t2-2xz+2yt
=(x2-2xz+z2)+(-y2+2yt-t2)
=(x2-2xz+z2)-(y2-2yt+t2)
=(x-z)2-(y-t)2
=(x-z-y+t)(x-z+y-t)
\(\left(x^2-2xz+z^2\right)-\left(y^2-2yt+t^2\right)=\left(x-z\right)^2-\left(y-t\right)^2=\left(x-z+y-1\right)\left(x-z-y+t\right)\)
Chúc Bạn học tốt
T I C K nha
x2 + z2 -y2 + 2xz
= x2 + 2xz + z2 - y2
= (x+z)^2 - y^2
=(x+z-y)(x-z+y)
\(a,2x^2-4x+2=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\)
\(b,4x-4y+x^2\left(y-x\right)=4\left(x-y\right)-x^2\left(x-y\right)=\left(x-y\right)\left(2-x\right)\left(2+x\right)\)
\(c,2xz+y^2-x^2-z^2=y^2-\left(x^2-2xz+z^2\right)=y^2-\left(x-z\right)^2=\left(y-x+z\right)\left(y+x-z\right)\)
\(d,3a^2-3ab+9b-9a=3a\left(a-b\right)-9\left(a-b\right)=\left(3a-9\right)\left(a-b\right)=3\left(a-3\right)\left(a-b\right)\)
\(f,x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
a.
\(x^4-x^3-x+1=x^3\times\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)=\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)^2\left(x^2+x+1\right)\)
b.
\(8xy^3-5xyz-24y^2+15z=8y^2\times\left(xy-3\right)-5z\left(xy-3\right)=\left(xy-3\right)\left(8y^2-5z\right)\)
c.
\(x^2-y^2+2x+1=\left(x+1\right)^2-y^2=\left(x-y+1\right)\left(x+y+1\right)\)
d.
\(x^2+2xz-y^2+2ty+z^2-t^2=\left(x+z\right)^2-\left(y-t\right)^2=\left(x+z+y-t\right)\left(x+z-y+t\right)\)
e.
\(2x^2-y^2+xy=2x^2+2xy-y^2-xy=2x\times\left(x+y\right)-y\times\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)
f.
\(y^2-y-12=y^2-3y+4y-12=y\times\left(y-3\right)+4\times\left(y-3\right)=\left(y-3\right)\left(y+4\right)\)
\(x^4-x^3-x+1\)
\(=x^3\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-1\right)\)
\(=\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)^2\left(x^2+x+1\right)\)
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
x2-y2+z2-t2-2xz+2yt
=(x2-2xz+z2).-(y2-2yt+t2)
=(x-z)2.-(y-t)2
\(x^2-y^2+z^2-t^2-2xz+2yt\)
\(=\left(x^2-2xz+z^2\right)-\left(y^2+2yt-t^2\right)\)
\(=\left(x-z\right)^2-\left(y-t\right)^2\)
\(=\left(x-z+y-t\right).\left(x-z-y+t\right)\)
chắc chắn 100% là đúng nha bạn