K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

\(a,2x^2-4x+2=2\left(x^2-2x+1\right)=2\left(x-1\right)^2\)

\(b,4x-4y+x^2\left(y-x\right)=4\left(x-y\right)-x^2\left(x-y\right)=\left(x-y\right)\left(2-x\right)\left(2+x\right)\)

\(c,2xz+y^2-x^2-z^2=y^2-\left(x^2-2xz+z^2\right)=y^2-\left(x-z\right)^2=\left(y-x+z\right)\left(y+x-z\right)\)

\(d,3a^2-3ab+9b-9a=3a\left(a-b\right)-9\left(a-b\right)=\left(3a-9\right)\left(a-b\right)=3\left(a-3\right)\left(a-b\right)\)

\(f,x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

19 tháng 10 2020

a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )

b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2

c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )

d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )

e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )

f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )

g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )

19 tháng 10 2020

a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)

b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)

c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)

\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)

e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)

\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)

\(=3\left(x-y\right)\left(x+y+4\right)\)

f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)

\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)

g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)

\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)

\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)

1 tháng 10 2020

a) \(5ax-15ay+20a\)

\(=5a\left(x-3y+4\right)\)

b) \(6xy-12x-8y\)

\(=6\left(xy-2x-3y\right)\)

c) \(3ab\left(x-y\right)+3a\left(y-x\right)\)

\(=3a\left(x-y\right)\left(b-1\right)\)

d) \(x^2-xy+2x-2y\)

\(=\left(x+2\right)\left(x-y\right)\)

1 tháng 10 2020

e) \(ax^2-5x^2-ax+5x+a-5\)

\(=\left(a-5\right)\left(x^2-x+1\right)\)

1 tháng 10 2020

a, \(5ax-15ay+20a=5a\left(x-5y+4\right)\)

b, sai 

c, \(3ab\left(x+y\right)+3a\left(y-x\right)=3ab\left(x+y\right)-3a\left(x+y\right)=\left(3ab-3a\right)\left(x+y\right)\)

d, \(x^2-xy+2x-2y=x\left(x+2\right)-y\left(x+2\right)=\left(x-y\right)\left(x+2\right)\)

Tượng tự ... 

1 tháng 10 2020

a) 5ax - 15ay + 20a = 5a( x - 3y + 4 )

b) 6xy - 12x - 8y = 2( xy - 6x - 4y )

c) 3ab( x - y ) + 3a( y - x ) = 3ab( x - y ) - 3a( x - y ) = ( x - y )( 3ab - 3a ) = 3a( x - y )( b - 1 )

d) x2 - xy + 2x - 2y = x( x - y ) + 2( x - y ) = ( x - y )( x + 2 )

e) ax2 - 5x2 - ax + 5x + a - 5 = x2( a - 5 ) - x( a - 5 ) + ( a - 5 ) = ( a - 5 )( x2 - x + 1 )

g) x2y - 4xy2 + 4y3 - 36yz2 = y( x2 - 4xy + 4y2 - 36z2 ) = y[ ( x2 - 4xy + 4y2 ) - 36z2 ] = y[ ( x - 2y )2 - ( 6z )2 ] = y( x - 2y - 6z )( x - 2y + 6z )

h) 4xy - x2 - 4y2 + m2 - 6m + 9

= ( m2 - 6x + 9 ) - ( x2 - 4xy + 4y2 )

= ( m - 3 )2 - ( x - 2y )2

= ( m - 3 - x + 2y )( m - 3 + x - 2y )

i) x2 + x - 12 = x3 - 3x + 4x - 12 = x( x - 3 ) + 4( x - 3 ) = ( x - 3 )( x + 4 )

k) 5x2 + 14x - 3 = 5x2 - x + 15x - 3 = x( 5x - 1 ) + 3( 5x - 1 ) = ( 5x - 1 )( x + 3 )

m) x2 - 5xy + 4y2 = x2 - xy - 4xy + 4y2 = x( x - y ) - 4y( x - y ) = ( x - y )( x - 4y ) < đã sửa đề >

n) 3x2 - 5xy + 2y2 + 4x - 4y = ( 3x2 - 5xy + 2y2 ) + ( 4x - 4y ) = ( 3x2 - 3xy - 2xy + 2y2 ) + 4( x - y ) = [ 3x( x - y ) - 2y( x - y ) ] + 4( x - y ) = ( x - y )( 3x - 2y ) + 4( x - y ) = ( x - y )( 3x - 2y + 4 )

f) 2x3 + 4x2y + 2xy2 = 2x( x2 + 2xy + y2 ) = 2x( x + y )2

17 tháng 7 2017

a) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)

                  \(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

                  \(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)\)

b) sửa đề nhé!

\(6x-9-x^2=-\left(x^2-6x+9\right)\)

                       \(=-\left(x-3\right)^2\)

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

23 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 401 người nhận rồi

OKz

23 tháng 10 2018

thì sao bạn mk ko rảnh bạn nhé

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)