\(x^6-64y^{12}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

\(x^6-64x^{12}=\left(x^3\right)^2-\left(8x^6\right)^2=\left(x^3-8x^6\right)\left(x^3+8x^6\right).\)

\(=x^6\left(1-8x^3\right)\left(1+8x^3\right)=x^6\left(1-2x\right)\left(1+2x+4x^2\right)\left(1+2x\right)\left(1-2x+4x^2\right)\)

18 tháng 9 2020

27x6 + 125y6 = ( 3x2 )3 + ( 5y2 )3 = ( 3x2 + 5y2 )( 9x4 - 15x2y2 + 25y4 )

8a6 - 8b6 = ( 2a2 )3 - ( 2b2 )3 = ( 2a - 2b )( 4a2 + 4ab + 4b2 ) = 2( a - b )4( a2 + ab + b2 ) = 8( a - b )( a2 + ab + b2 )

x4 + 64y4 = x4 + 16x2y2 + 64y4 - 16x2y2 

                = ( x4 + 16x2y2 + 64y4 ) - 16x2y2

                = ( x2 + 8y2 )2 - ( 4xy )2

                = ( x2 + 8y2 - 4xy )( x2 + 8y2 + 4xy )

x4 + x3 + 2x2 + x + 1 = x4 + x3 + x2 + x2 + x + 1

                                  = ( x4 + x3 + x2 ) + ( x2 + x + 1 )

                                  = x2( x2 + x + 1 ) + ( x2 + x + 1 )

                                  = ( x2 + x + 1 )( x2 + 1 )

\(27x^6+125y^6=\left(3x^2\right)^3+\left(5y^2\right)^3=\left(3x^2+5y^2\right)\left(9x^4-15x^2.y^2+25y^4\right)\)

\(8a^6-8b^6=8\left(a^6-b^6\right)=8\left(\left(a^3\right)^2-\left(b^3\right)^2\right)=8\left(a^3-b^3\right)\left(a^3+b^3\right)\)

                                                       \(=8\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(x^{\text{4}}+64y^4=x^4+64y^4+16x^2y^2-16x^2y^2\)

                       \(=\left(8y^2+x^2\right)^2-\left(4xy\right)^2=\left(8y^2+x^2+4xy\right)\left(8y^2+x^2-4xy\right)\)

\(x^4+x^3+2x^2+x+1=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)

31 tháng 7 2016

\(x^{12}-3x^6+1=\left(x^{12}+x^9-x^6\right)-\left(x^9-x^3+x^6\right)-\left(x^3-1+x^6\right)=x^6\left(x^6+x^3-1\right)-x^3\left(x^6+x^3-1\right)-\left(x^6+x^3-1\right)\)

\(=\left(x^6+x^3-1\right)\left(x^6-x^3-1\right)\)

31 tháng 7 2016

x12-2x6+1-x6

=(x6-1)2-x6

= (x6-1-x3)(x6-1+x3)

8 tháng 12 2017

a) \(x^2+6x+9\)

\(=\left(x+3\right)^2\)

\(=\left(x+3\right)\left(x+3\right)\)

b) \(10x-25-x^2\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x-5\right)^2\)

\(=-\left(x-5\right)\left(x-5\right)\)

c) \(8x^3-\frac{1}{8}\)

\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)

\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)

d) \(\frac{1}{25}x^2-64y^2\)

\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)

\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)

8 tháng 12 2017

a) \(x^2+6x+9=x^2+2.3.x+3^2\)\(=\left(x+3\right)^2\)

b)\(10x-25-x^2=-\left(x^2-10x+25\right)\)\(=-\left(x^2-2.5.x+5^2\right)=-\left(x+5\right)^2\)

c)\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)\(=\left(2x-\frac{1}{2}\right)\left(4x+x+\frac{1}{4}\right)\)

d)\(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}\right)^2-\left(8y\right)^2\)\(=\left(\frac{1}{5}-8y\right)\left(\frac{1}{5}+8y\right)\)

27 tháng 1 2018

      \(x^{12}+x^6+1\)

\(=\left(x^{12}+2x^6+1\right)-x^6\)

\(=\left(x^6+1\right)^2-x^6\)

\(=\left(x^6-x^3+1\right)\left(x^6+x^3+1\right)\)

27 tháng 1 2018

x^12 + x^6 + 1

= ( x^12 - x^3 ) + ( x^6 + x^3 + 1 )

= x^3 . ( x^9 - 1 ) + ( x^6 + x^3 + 1 )

= x^3 . ( x^3-1) . ( x^6 + x^3 + 1 ) + ( x^6 + x^3 + 1 )

= ( x^6 + x^3 + 1 ) . ( x^6 - x^3 + 1 )

Tk mk nha

1 tháng 10 2018

a) \(8x^3-\frac{1}{8}\)

\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)

\(=\left(2x-\frac{1}{2}\right)\left(4x^2+2x+\frac{1}{4}\right)\)

b) \(\frac{1}{25}x^2-64y^2\)

\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)

\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)

22 tháng 12 2016

a)

\(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

b)

Đặt \(x^2+3x+1=t\), ta có:

\(t\left(t+1\right)-6\)

\(=t^2+t-6\)

\(=t^2+3x-2x-6\)

\(=t\left(t+3\right)-2\left(t+3\right)\)

\(=\left(t+3\right)\left(t-2\right)\)

22 tháng 12 2016

a, \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)

\(=\left(x^2+3x+1,5\right)^2-2,5^2\)

\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)

\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)

27 tháng 7 2019

\(\times^2+7\times+12\)

\(=(\times^2+4\times)+\left(3\times+12\right)\)

\(=\times\left(\times+4\right)+3\left(\times+4\right)\)

\(=\left(\times+4\right)\left(\times+3\right)\)

\(x^2+7x+12=x^2+3x+4x+12\)

                            \(=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)

2 tháng 10 2019

b, x^6+27=x^2*3+3^3

                 =(x^2+3)(x^4-3x^2+9)

hok tốt

2 tháng 10 2019

a, x^2 + 2xy + y^2 - x - y - 12

= (x^2 + 2xy + y^2) - (x + y) - 16 + 4

= (x + y)^2 - 4^2 - (x + y - 4)

= (x + y - 4)(x + y + 4) - (x + y - 4)

= (x + y - 4)(x + y + 4 - 1)

= (x + y - 4)(x + y + 3)

b, x^6 + 27

= (x^2)^3 + 3^3

= (x^2 + 3)[(x^2)^2 - 3x^2 + 3^2]

= (x^2 + 3)(x^4 - 3x^2 + 9)

c, x^7 + x^5 + 1

=x^7 - x^6 + x^5 - x^3 + x^2 + x^6 - x^5 + x^4 - x^2 + x + x^5 - x^4 + x^3 - x + 1
= (x^2 + x + 1)(x^5 - x^4 + x^3 - x+1)

8 tháng 10 2017

\(x^2+7x+12\)

cách 1: \(=x^2+4x+3x+12\)

\(=x\left(x+4\right)+3\left(x+4\right)\)

\(=\left(x+4\right)\left(x+3\right)\)

cách 2: \(=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

cách 3: \(=\left(x^2+7x+12,25\right)-0.25\)

\(=\left(x+3.5\right)^2-0.5^2\)

\(=\left(x+3.5+0.5\right)\left(x+3.5-0.5\right)\)

\(=\left(x+4\right)\left(x+3\right)\)

lấy đâu ra 8 cách vậy trời!!!!!!!!!!!!!!!

17 tháng 11 2017

Cách 1: 

   \(x^2+7x+12\)

\(=\left(x^2+4x\right)+\left(3x+12\right)\)

\(=x\left(x+4\right)+3\left(x+4\right)\)

\(=\left(x+3\right)\left(x+4\right)\)