Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b)
Đặt \(x^2+3x+1=t\), ta có:
\(t\left(t+1\right)-6\)
\(=t^2+t-6\)
\(=t^2+3x-2x-6\)
\(=t\left(t+3\right)-2\left(t+3\right)\)
\(=\left(t+3\right)\left(t-2\right)\)
a, \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)
\(=\left(x^2+3x+1,5\right)^2-2,5^2\)
\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)
\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)
Đặt \(x^2-3x-1=a\)thay vào biểu thức ta được :
\(a^2-12a+27\)
\(=a^2-3a-9a+27\)
\(=a\left(a-3\right)-9\left(a-3\right)\)
\(=\left(a-3\right)\left(a-9\right)\)(1)
Thay \(a=x^2-3x-1\)vào (1) ta được :
\(\left(x^2-3x-1-3\right)\left(x^2-3x-1-10\right)\)
\(=\left(x^2-3x-4\right)\left(x^2-3x-11\right)\)
Bạn Châu sai đáp án cuối
phải là (x2-3x-4)(x2-3x-10) nha
a) \(x^3-3x+1-3x^2=\left(x^3+1\right)-\left(3x^2+3x\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1-3x\right)=\left(x+1\right)\left(x^2-4x+1\right)\)
b) \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]=2\left(x+1+y\right)\left(x+1-y\right)\)
\(3y^3+6xy^2+3x^2y=3y\left(y^2+2xy+x^2\right)=3y\left(x+y\right)^2\)
\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)\)
\(=\left(x-1\right)\left(x^2+4x+1\right)\)
Tham khảo nhé~
Ta có : \(4x^2-3x-1\)
\(=4x^2-4x+x-1\)
\(=4x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(4x+1\right)\)
Ta có : \(x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=x\left(x-3\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-4\right)\left(x-3\right)\)
\(x^8+x^4+1=\left(x^8+2x^4+1\right)-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
câu b thì tương tự câu này
\(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
câu cuối cũng giống câu này
\(x^8+x^4+1\)
\(\text{Phân tích đa thức thành nhân tử :}\)
\(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
Lát làm tiếp
1) \(=5\left(x+y\right)-\left(x-y\right)\left(x+y\right)=\left(x+y\right)\left(5-x+y\right)\)
2) \(=3\left(x^2-4x+4\right)=3\left(x-2\right)^2\)
3) \(=\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
4) \(=\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\)
5) \(=3\left(a^2-10a+25-b^2\right)=3\left(\left(a-5\right)^2-b^2\right)=3\left(a-5-b\right)\left(a-5+b\right)\)
6) \(=a\left(x-y\right)\left(x+y\right)+b\left(x+y\right)=\left(x+y\right)\left(ax-ay+b\right)\)
Ta có : (x3 + 3x + 1)(x3 + 3x + 2) - 6
= (x3 + 3x + 1,5 - 0,5)(x3 + 3x + 1,5 + 0,5) - 6
= (x3 + 3x + 1,5)2 - 0,52 - 6
= (x3 + 3x + 1,5)2 - 6,25
= (x3 + 3x + 1,5 - 2,5) (x3 + 3x + 1,5 + 2,5)
= (x3 + 3x - 1) (x3 + 3x + 3)
\(x^{12}-3x^6+1=\left(x^{12}+x^9-x^6\right)-\left(x^9-x^3+x^6\right)-\left(x^3-1+x^6\right)=x^6\left(x^6+x^3-1\right)-x^3\left(x^6+x^3-1\right)-\left(x^6+x^3-1\right)\)
\(=\left(x^6+x^3-1\right)\left(x^6-x^3-1\right)\)
x12-2x6+1-x6
=(x6-1)2-x6
= (x6-1-x3)(x6-1+x3)