Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{2}x\right)^6-\left(5y\right)^3\)
\(=\left(\frac{1}{4}x^2\right)^3-\left(5y\right)^3\)
\(\left(\frac{1}{4}x^2-5y\right)\left[\left(\frac{1}{4}x^2\right)^2+\left(\frac{1}{4}x^2\right).5y+25y^2\right]\)
\(b,27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.2.\left(3a\right)^2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
\(c,x^6-x^6\)
\(=0\)
\(d,10x-25-x^2\)
\(=-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
a) \(6x^2+6\)
\(=6\left(x^2+1\right)\)
b) \(2x^2-18\)
\(=2\left(x^2-9\right)\)
\(=2\left(x-3\right)\left(x+3\right)\)
c) \(3x^2-3xy+4x-4y\)
\(=\left(3x^2-3xy\right)+\left(4x-4y\right)\)
\(=3x\left(x-y\right)+4\left(x-y\right)\)
\(=\left(3x-4\right)\left(x-y\right)\)
a) \(\left(x^3-9x^2+27x-27\right)\)\(:\)\(\left(x-3\right)\)
\(=\left(x-3\right)^3\)\(:\)\(\left(x-3\right)\)
\(=\left(x-3\right)^2\)
c) \(\frac{x^2-4}{2x}:\frac{3x-6}{6}\)
\(=\frac{\left(x-2\right)\left(x+2\right)}{2x}.\frac{6}{3\left(x-2\right)}\)
\(=\frac{\left(x+2\right)}{x}\)
a) x2 – 4x + 3 = x2 – x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
Bài giải:
a) x2 – 4x + 3 = x2 – x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b) x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)
c) x2 – x – 6 = x2 +2x – 3x – 6
= x(x + 2) - 3(x + 2)
= (x + 2)(x - 3)
d) x4+ 4 = x4 + 4x2 + 4 – 4x2
= (x2 + 2)2 – (2x)2
= (x2 + 2 – 2x)(x2 + 2 + 2x)
\(x^2-\text{5}xy-14y^2\)
\(=x^2+2xy-7xy-14y^2\)
\(=x\left(x+2y\right)-7y\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-7y\right)\)
a) \(x^2-5xy-14y^2=x^2-7xy+2xy-14y^2\)
\(=\left(x-7y\right)\left(x+2y\right)\)
b) \(x^2-5x+6=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\)
c) \(x^4+4=x^4+4x^2+4-\left(2x\right)^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
d)
c, \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
\(=x^2\left(x+1\right)[x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
d,
\(2x^3-x^2-1\)
\(=2x^3-2x^2+x^2-x+x-1\)
\(=2x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(2x^2+x+1\right)\)
1)\(8x^6-\frac{1}{125}y^3=\left(2x^2\right)^3-\left(\frac{1}{5}y\right)^3\)
Bạn tự lm tiếp.AD HĐT số (7)
2)\(\left(x+4\right)^3-64=\left(x+4\right)^3-4^3\)
AD HĐT số (7).Tự lm tiếp
3)\(x^6+1=\left(x^2\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
4)\(x^9+1=\left(x^3\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
5,\(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2\)
AD HĐT số (3).Tự lm tiếp
6)\(x^3+6x^2+12x+8=\left(x+2\right)^3\)
AD HĐT số (4)
7)\(x^3-15x^2+75x-125=\left(x-5\right)^3\)
AD HĐT số (5)
8)\(27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.\left(3a\right)^2.2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
AD HĐT số (5)
27x6 + 125y6 = ( 3x2 )3 + ( 5y2 )3 = ( 3x2 + 5y2 )( 9x4 - 15x2y2 + 25y4 )
8a6 - 8b6 = ( 2a2 )3 - ( 2b2 )3 = ( 2a - 2b )( 4a2 + 4ab + 4b2 ) = 2( a - b )4( a2 + ab + b2 ) = 8( a - b )( a2 + ab + b2 )
x4 + 64y4 = x4 + 16x2y2 + 64y4 - 16x2y2
= ( x4 + 16x2y2 + 64y4 ) - 16x2y2
= ( x2 + 8y2 )2 - ( 4xy )2
= ( x2 + 8y2 - 4xy )( x2 + 8y2 + 4xy )
x4 + x3 + 2x2 + x + 1 = x4 + x3 + x2 + x2 + x + 1
= ( x4 + x3 + x2 ) + ( x2 + x + 1 )
= x2( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x2 + 1 )
\(27x^6+125y^6=\left(3x^2\right)^3+\left(5y^2\right)^3=\left(3x^2+5y^2\right)\left(9x^4-15x^2.y^2+25y^4\right)\)
\(8a^6-8b^6=8\left(a^6-b^6\right)=8\left(\left(a^3\right)^2-\left(b^3\right)^2\right)=8\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=8\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(x^{\text{4}}+64y^4=x^4+64y^4+16x^2y^2-16x^2y^2\)
\(=\left(8y^2+x^2\right)^2-\left(4xy\right)^2=\left(8y^2+x^2+4xy\right)\left(8y^2+x^2-4xy\right)\)
\(x^4+x^3+2x^2+x+1=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)=\left(x^2+1\right)\left(x^2+x+1\right)\)