\(x^4-y^4\)

Rút gọn đa thức: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2020

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(1^2-2^2+3^2-....-100^2=\left(1^2-2^2\right)+...+\left(99^2-100^2\right)=\)

\(-1\left(1+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(99+100\right)=\frac{-100.101}{2}=-5050\)

24 tháng 7 2020

a) (x-1)(2x+5)

b) (x+1)(x-5)

c) [(x+1)^2](x^2+x+1)

d) (x-1)(x^3-x-1)

e) (x+y)(x-y-1)

24 tháng 7 2020

a) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)

b) x2 - 4x  - 5 = x2 - 5x + x - 5 = x(x - 5) + (x - 5) =  (x + 1)(x - 5)

c) x4 + x3  + x + 1 = x3(x + 1) + (x + 1) = (x + 1)(x3 + 1) = (x + 1)2(x2 - x + 1)

d) x4 - x3 - x2 + 1 = x3(x - 1) - (x - 1)(x + 1) = (x - 1)(x3 - x - 1)

e) -x - y2 + x2 - y = -(x + y) + (x - y)(x + y) = (-1 + x - y)(x + y)

24 tháng 7 2020

a. \(x^5+x+1\)

\(=\left(x^5-x^2\right)+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\)\(+x^2+x+1\)

\(=\left[x^2\left(x-1\right)+1\right]\left(x^2+x+1\right)\)

\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

b.\(x^3+x^2+4\)

=\(x^3+2x^2-x^2-2x+2x+4\)

\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-x+2\right)\)
c.\(x^4+2x^2-24\)

\(=x^4+2x^3-2x^3-4x^2+6x^2+12x-12x-24\)

\(=x^3\left(x+2\right)-2x^2\left(x+2\right)+6x\left(x+2\right)-12\left(x+2\right)\)

\(=\left(x^3-2x^2+6x-12\right)\left(x+2\right)\)

\(=\left[x^2\left(x-2\right)+6\left(x-2\right)\right]\left(x+2\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

24 tháng 7 2020

a, x^5 + x + 1 = x ^ 5 - x^2 + (x ^2 + x + 1) = x^2 ( x-1) ( x^2+x+1) + ( x^2+x+1) = ( x^2+x+1 ) ( x^3-x^2+1)

c, x^4 + 2x^2 -24 = (x^4 +6x^2) - ( 4x^2+24) = x^2( x^2+6) - 4(x^2+6) = (x^2-4)(x^2 +6 ) = (x-2)(x+2)(x^2+6)

21 tháng 7 2019

a,x^2+4-16x^2

-15x^2+4

-(15x^2-4)

b,(1-2y+y^2)-(x^2-4xz+4z^2)

(1-y)^2-(x-z)^2

(1-y+x-z)(1-y-x+z)

c,(4x^2-4xy+y^2)-(25z^2-10z+1)

(2x+y)^2-(5z-1)^2

(2x+y+5z-1)(2x+y-5z+1)

14 tháng 10 2016

toán lớp 8 mà bạn sao lại lớp 7

17 tháng 10 2016

mình nhâm hàng :v 

24 tháng 7 2020

Bài làm:

a) \(2x^2+7x+5=\left(2x^2+2x\right)+\left(5x+5\right)=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(2x+5\right)\left(x+1\right)\)

b) \(x^3-2x-4=\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)

c) \(x^2+4x+3=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

24 tháng 7 2020

2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = ( 2x2 + 2x ) + ( 5x + 5 ) = 2x( x + 1 ) + 5( x + 1 ) = ( 2x + 5 )( x + 1 )

x2 + 4x + 3 = x2 + x + 3x + 3 = ( x2 + x ) + ( 3x + 3 ) = x( x + 1 ) + 3( x + 1 ) = ( x + 3 )( x + 1 )

29 tháng 3 2017

\(\left\{{}\begin{matrix}f\left(x\right)=3x^4+5yx^2-3yx+y^4+z^2\\M\left(x\right)=ax^4+bx^2+cx+D\end{matrix}\right.\)

\(f\left(x\right)+M\left(x\right)=\left(3+a\right)x^4+\left(5y+a\right)x^2+\left(-3y+c\right)x+y^4+z^2+D\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-5y\\c=3y\end{matrix}\right.\)\(\Rightarrow M\left(x\right)=-3x^4-5yx^2+3yx+y^4+z^2+D\) với D tùy ý không chứa x

30 tháng 3 2017

\(\int f\left(x\right)dx=x^3+C\)

\(\sum a\left(b^2-1\right)\left(c^2-1\right)\)

\(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(b^2-1\right)\left(a^2-1\right)\)

\(\begin{matrix}\sum a\left(b^2-1\right)\left(c^2-1\right)=\sum\left(ab^2-a\right)\left(c^2-1\right)=\sum\left(ab^2c^2-ab^2-ac^2+a\right)\\\left(ab^2c^2-ab^2-ac^2+a\right)+\\\left(a^2bc^2-ba^2-bc^2+b\right)+\\\left(a^2b^2c-b^2c-a^2c+c\right)\end{matrix}\)

\(a+b+c\Rightarrow a+b=abc-c\) \(\Rightarrow\sum ab\left(a+b\right)=\sum ab\left(abc-c\right)=\sum a^2b^2c-abc\)

\(\left[abc\left(bc+ac+ab\right)\right]-\left[ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\right]+\left[\left(a+b+c\right)\right]\)

\(\sum a^2b^2c-abc=\left(-abc+a^2b^2c\right)+\left(-abc+a^2bc^2\right)+\left(-abc+ab^2c^2\right)=-3abc+abc\left(ab+bc+ac\right)\)

\(\left[abc\left(bc+ac+ab\right)\right]+3abc-abc\left(ab+bc+ac\right)+\left(a+b+c\right)=3abc+abc=4abc=VP\)