Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\)
\(=\left(ab^2+ba^2+abc\right)+\left(bc^2+cb^2+abc\right)+\left(ca^2+ac^2+abc\right)\)
\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)
a) \(P\left(a,b\right)=3a^2-2ab+b^2=3a^2-3ab+ab-b^2\)\(=3a\left(a-b\right)+b\left(a-b\right)=\left(a-b\right)\left(3a+b\right)\)
b) \(P\left(a,b\right)=0\Leftrightarrow\orbr{\begin{cases}a-b=0\\3a+b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=\frac{-b}{3}\end{cases}}}\)
+) \(a=b\Leftrightarrow M=\frac{a^2+a.a+2a^2}{2a^2-a^2}=4\)
+) \(a=\frac{-b}{3}\Rightarrow M=\frac{\left(\frac{-b}{3}\right)^2+\left(\frac{-b}{3}\right).b+2b^2}{2.\left(\frac{-b}{3}\right)^2-b^2}=\frac{\frac{16}{9}b^2}{\frac{-7}{9}b^2}=\frac{-16}{7}\)
a.
\(25\left(x-y\right)^2-16\left(x+y\right)^2\)
\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)
\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)
\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)
\(=\left(x-9y\right)\left(9x-y\right)\)
b.
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left[2\left(ab+2\right)\right]^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left[\left(a+b\right)^2-1^2\right]\left[\left(a-b\right)^2-3^2\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)
\(\Leftrightarrow ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(\Leftrightarrow a\left(b^2-c^2-ab+ac\right)+bc^2-b^2c\)
\(\Leftrightarrow a[\left(b-c\right)\left(b+c\right)-a\left(b-c\right)]-bc\left(b-c\right)\)
\(\Leftrightarrow a\left(b-c\right)\left(b+c-a\right)-bc\left(b-c\right)\)
\(\Leftrightarrow\left(b-c\right)\left(ab+ac-a^2-bc\right)\)
\(\Leftrightarrow\left(b-c\right)[a\left(b-a\right)-c\left(b-a\right)]\)
\(\Leftrightarrow\left(b-c\right)\left(a-c\right)\left(b-a\right)\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)..\)
\(=a^2\left(1-b\right)\left(1+b\right)-b\left(1-b\right)-a\left(1-b\right).\)
\(=\left(a^2+a^2b-b-a\right)\left(1-b\right)\)
\(=\left(ab+a+b\right)\left(a-1\right)\left(1-b\right)\)
\(a^2+b^2-a^2b^2+ab-a-b\)
\(=a^2\left(1-b^2\right)+b\left(b-1\right)+a\left(b-1\right)\)
\(=a^2\left(1-b\right)\left(1+b\right)-b\left(1-b\right)-a\left(1-b\right)\)
\(=\left(a^2+a^2b-b-a\right)\left(1-b\right)\)
\(=\left(ab+a+b\right)\left(a-1\right)\left(1-b\right)\)
TL:
\(ab\left(a^2+b^2\right)-xy\left(a^2+b^2\right)\)
\(=\left(ab-xy\right)\left(a^2+b^2\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
help me