Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\)
\(=\left(ab^2+ba^2+abc\right)+\left(bc^2+cb^2+abc\right)+\left(ca^2+ac^2+abc\right)\)
\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)
a) =a(b2- c2) + bc2- ba2 +a2c - b2c
=a(b2-c2) - (b2c - bc2) - (ba2 - a2c)
=a(b-c)(b+c) -bc(b-c) - a2(b-c)
=(b-c)\(\left[a\left(b+c\right)-bc-a^2\right]\)
=(b-c)(ab+ac-bc-a2)
=\(\left(b-c\right)\left[\left(ab-bc\right)-\left(a^2-ac\right)\right]\)
=\(\left(b-c\right)\left[b\left(a-c\right)-a\left(a-c\right)\right]\)
=\(\left(b-c\right)\left(a-c\right)\left(b-a\right)\)
\(a.\left(b^2+c^2+bc\right)+b.\left(c^2+a^2+ac\right)+c.\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+bc^2+ba^2+bac+ca^2+cb^2+cab\)
\(=\left(ab^2+ba^2+abc\right)+\left(ac^2+ca^2+bac\right)+\left(bc^2+cb^2+cab\right)\)
\(=ab.\left(b+a+c\right)+ac.\left(c+a+b\right)+bc.\left(c+b+a\right)\)
\(=\left(a+b+c\right).\left(ab+ac+bc\right)\)
(Nhớ click cho mình với nhoa!)
a) TA CÓ:
\(a^2bc^2d-ab^2cd^2+a^2bcd^2-ab^2c^2d\)
\(=abcd\left(ac-bd+ad-bc\right)\)
\(=abcd\left[a\left(c+d\right)-b\left(c+d\right)\right]\)
\(=abcd\left(c+d\right)\left(a-b\right)\)