Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\)
\(=\left(ab^2+ba^2+abc\right)+\left(bc^2+cb^2+abc\right)+\left(ca^2+ac^2+abc\right)\)
\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)
a: Sửa đề: \(a^2\left(a+1\right)+b^2\left(b-1\right)-a^2b^2\left(a+b\right)\)
\(=a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a+b\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)\)
b: \(=a^m\cdot a^3+2\cdot a^m\cdot a^2+a^m\)
\(=a^m\left(a^3+2a^2+1\right)\)
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
3a2c2 + bd + 3abc + acd
= 3ac(ac + b) + d(ac + b)
= (ac + b)(3ac + d)
ab(a + b) - bc(a + c) + abc
= b(a2 + ab - ac - c2 + ac)
= b(a2 + ab - c2)
a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 2abc
= ab2 + ac2 + bc2 + a2b + c(a2 + 2ab + b2)
= c2(a + b) + ab(a + b) + c(a + b)2
= (a + b)(c2 + ab + ac + bc)
= (a + b)[c(b + c) + a(b + c)]
= (a + b)(a + c)(b + c)
bc(b + c) + ac(c - a) - ab(a + b)
= bc(b + c) + ac[(b + c) - (a + b)] - ab(a + b)
= bc(b + c) + ac(b + c) - ac(a + b) - ab(a + b)
= c(b + c)(a + b) - a(a + b)(b + c)
= (a + b)(b + c)(c - a)
Câu 1: \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4+b^4+c^4-2a^2b^2-2c^2a^2+2b^2c^2\right)-4b^2c^2=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)Câu 2: \(a^3+a^2-ab^2-b^2=a^2\left(a+1\right)-b^2\left(a+1\right)=\left(a^2-b^2\right)\left(a+1\right)=\left(a+b\right)\left(a-b\right)\left(a+1\right)\)
Câu 3: \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=a\left(b^3-c^3\right)-b\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(b-c\right)\left[b\left(c-a\right)+\left(c-a\right)\left(c+a\right)\right]=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
Câu 1.
a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2
= [ ( a4 - 2a2b2 + b4 ) - 2a2c2 + 2b2c2 + c4 ] - 4b2c2
= [ ( a2 - b2 )2 - 2( a2 - b2 )c2 + ( c2 )2 ] - ( 2bc )2
= ( a2 - b2 - c2 ) - ( 2bc )2
= ( a2 - b2 - c2 - 2bc )( a2 - b2 - c2 + 2bc )
= [ a2 - ( b2 + 2bc + c2 ) ][ a2 - ( b2 - 2bc + c2 ) ]
= [ a2 - ( b + c )2 ][ a2 - ( b - c )2 ]
= ( a - b - c )( a + b + c )( a - b + c )( a + b - c )
Câu 2.
a3 + a2 - ab2 - b2
= a2( a + 1 ) - b2( a + 1 )
= ( a + 1 )( a2 - b2 )
= ( a + 1 )( a - b )( a + b )
Sử dụng phương pháp hoán vị là ra thôi bạn
\(\Leftrightarrow ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(\Leftrightarrow a\left(b^2-c^2-ab+ac\right)+bc^2-b^2c\)
\(\Leftrightarrow a[\left(b-c\right)\left(b+c\right)-a\left(b-c\right)]-bc\left(b-c\right)\)
\(\Leftrightarrow a\left(b-c\right)\left(b+c-a\right)-bc\left(b-c\right)\)
\(\Leftrightarrow\left(b-c\right)\left(ab+ac-a^2-bc\right)\)
\(\Leftrightarrow\left(b-c\right)[a\left(b-a\right)-c\left(b-a\right)]\)
\(\Leftrightarrow\left(b-c\right)\left(a-c\right)\left(b-a\right)\)