K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24

=[(x+3)2 - 1]. [(x+4)2-1] -24

=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24

=(x+4)(x+2)(x+5)(x-3) - 24

6 tháng 2 2022

(x2+6x+8)(x2+8x+15)-24

<=>(x2+4x+2x+8)(x2+5x+3x+15)-24

<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24

<=> (x+4)(x+2)(x+5)(x+3)-24

<=> (x+4)(x+3)(x+2)(x+5)-24

<=>(x2+7x+12)(x2+7x+10)

đặt t=x2+7x+11 ta có:

(t-1)(t+1)-24

<=> t2-1-24

<=>t2-25

<=>(t-5)(t+5)

thay t=x2+7x+11 vào ta có:

(x2+7x+11-5)(x2+7x+11+5)

<=>(x2+7x+6)(x2+7x+16)

17 tháng 12 2017

cái này dễ mà

= (2x)^3-3(2x)^2*1+2*3x*1^2-1^3

= (2x-1)^3

17 tháng 7 2018

\(a,x^2+6x+9\)

\(=\left(x+3\right)^2\)

\(b,10x-25-x^2\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x-5\right)^2\)

\(c,8x^3-\frac{1}{8}\)

\(=8x^3-\left(\frac{1}{2}\right)^3\)

\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)

\(d,8x^3+12x^2+6xy^2+y^3\)

\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)

hok tốt!

17 tháng 7 2018

ai tra loi dung minh cho

21 tháng 7 2017

c)\(x^3-x^2+x+3=x^2+x-2x^2-2x+3x+3\)

\(=x\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+3\right)\)

d)\(x^8+3x^4+4=\left(x^8+4x^4+4\right)-x^4=\left(x^4+2\right)^2-\left(x^2\right)^2\)

\(=\left(x^4-x^2+2\right)\left(x^4+x^2+2\right)\)

e)\(x^6-x^4-2x^3+2x^2=x^4\left(x^2-1\right)-2x^2\left(x-1\right)=x^4\left(x-1\right)\left(x+1\right)-2x^2\left(x-1\right)\)

\(=x^2\left(x-1\right)\left(x^3+x^2\right)-2x^2\left(x-1\right)=x^2\left(x-1\right)\left(x^3+x^2-2\right)\)

\(=x^2\left(x-1\right)\left[\left(x^3-1\right)+\left(x^2-1\right)\right]=x^2\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(x+1\right)\right]\)

\(=x^2\left(x-1\right)\left(x-1\right)\left(x^2+2x+2\right)=x^2\left(x-1\right)^2\left(x^2+2x+2\right)\)

21 tháng 7 2017

a)\(x^2-x-12\)

\(=x^2+4x-3x-12\)

\(=x\left(x+4\right)-3\left(x+4\right)\)

\(=\left(x+4\right)\left(x-3\right)\)

b) \(x^2+8x+15\)

\(=x^2+3x+5x+15\)

\(=x\left(x+3\right)+5\left(x+3\right)\)

\(=\left(x+3\right)\left(x+5\right)\)