K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

\(x^4+y^4\)

\(\left(x^2\right)^2+\left(y^2\right)^2+2x^2y^2-2x^2y^2\)

\(\left(x^2+y^2\right)^2-2x^2y^2\)

\(\left(x^2+y^2-\sqrt{2}xy\right)\left(x^2+y^2+\sqrt{2}xy\right)\)

Chúc bạn học tốt !!!

Bài làm

   x4 + y4 

= ( x2 )2 + 2x2y2 + ( y2 )2 - 2x2y2

= [ ( x2 )2 + 2x2y2 + ( y2 )2 ] - 2x2y2 

= ( x2 + y2 )2 - 2x2y2 

= ( x2 + y2 )2 - ( \(\sqrt{2}xy\))2 

= ( x2 + y2 - \(\sqrt{2}xy\))( x2 + y2 + \(\sqrt{2}xy\))

# Học tốt #

6 tháng 10 2018

\(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+\left(x^2+2xy+y^2\right)^2\)

\(=x^4+y^4+x^4+6x^2y^2+y^4+4x^3y+4xy^3\)

\(=2.\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)

\(=2.\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+2x^2y^2\)

\(=2.\left[\left(x^2+y^2\right)\left(x+y\right)^2+x^2y^2\right]\)

Sai thì thôi nhé~

DD
9 tháng 8 2021

       \(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)

\(=2\left(x^4+2x^3y+3x^2y^2+2xy^3+y^4\right)\)

\(=2\left[\left(x^4+2x^3y+x^2y^2\right)+2\left(x^2+xy\right)y^2+y^4\right]\)

\(=2\left[\left(x^2+xy\right)^2+2\left(x^2+xy\right)y^2+\left(y^2\right)^2\right]\)

\(=2\left(x^2+xy+y^2\right)^2\)

18 tháng 8 2016

Ta có : \(F=x^2-4^x+4-y^2\)

\(=\left(x^2-4^x+4\right)-y^2\)( nhóm hạng tử )

\(=\left(x-2\right)^2-y^2\)( đẳng thức số 2 )

\(=\left(x-2-y\right)\left(x-2+y\right)\)( đẳng thức số 3 )

Vậy : \(F=\left(x-2-y\right)\left(x-2+y\right)\)

18 tháng 8 2016

=(x-2)2-y2=(x-y-2)(x+y-2)

13 tháng 9 2020

x4 + 2x3 + x2 - y2

= ( x4 + 2x3 + x2 ) - y2

= [ ( x2 )2 + 2.x2.x + x2 ] - y2

= ( x2 + x )2 - y2

= ( x2 + x - y )( x2 + x + y )

13 tháng 9 2020

\(=x^2\left(x^2+2x+1\right)-y^2\)

\(=x^2\left(x+1\right)^2-y^2\)

\(=x^2\left(x+1-y\right)\left(x+1+y\right)\)

6 tháng 12 2019

      x2 + 1 - y2 - 2x 

= x2 - 2x + 1 - y2

=[x2 - 2x + 1] - y2

=[x-1] - y2

=[x-1-y][x-1+y]

7 tháng 12 2019

a) \(x^2+1-y^2-2x=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)

b) \(64x^4+y^4=\left(8x^2\right)^2+\left(y^2\right)^2=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

8 tháng 8 2018

\(x^2+4x-y^2+4\)

\(=\left(x^2+2.x.2+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right).\left(x+2+y\right)\)

Tham khảo nhé~

8 tháng 8 2018

\(x^2+4x-y^2+4\)

\(=x^2+4x+4-y^2\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x^2+2x.2+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left[\left(x+2\right)+y^2\right].\left[\left(x+2\right)-y^2\right]\)

\(=\left(x+2+y^2\right)\left(x+3-y^2\right)\)

21 tháng 1 2017

\(x^4+y^2-2x^2y+x^2+2x-2y\)

\(=\left(y^2-x^2y-xy\right)-\left(x^2y-x^4-x^3\right)+\left(xy-x^3-x^2\right)-\left(2y-2x^2-2x\right)\)

\(=y\left(y-x^2-x\right)-x^2\left(y-x^2-x\right)+x\left(y-x^2-x\right)-2\left(y-x^2-x\right)\)

\(=\left(y-x^2+x-2\right)\left(y-x^2-x\right)\)