Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(\left(x-y\right)^3\left(y-z\right)^3\left(z-x\right)^3\)
\(=\)\(\left[\left(x-y\right)\left(y-z\right)\left(z-x\right)\right]^3\)
\(b)\) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)
\(=\)\(3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Chúc bạn học tốt ~
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(a^3+a^2c-abc+b^2c+b^3\)
\(=\left(a^3+b^3\right)+\left(a^2c+b^2c-abc\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+\)\(c\left(a^2+b^2-ab\right)\)
\(=\left(a^2+b^2-ab\right)\left(a+b+c\right)\)
Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)
\(\Rightarrow x+y+z=0\)
Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)
Chúc bạn học tốt.
Trả lời
P=(a+b+c)3-(a+b-c)3-(b+c-a)3-(c+a-b)3
Đặt a+b-c=x, b+c-a=y, c+a-b=z
=>(a+b+c)3-x3-y3-z3
Có x+y+z=a+b-c+b+c-a+c+a-b=a+b+c
=>(x+y+z)3-x3-y3-z3
=>[ (x+y)+z3 ]-x3-y3-z3
=>(x+y)3+z3+3z(x+y) (x+y+z)-x3-y3-z3
=>x3+y3+3xy(x+y)+z3+3z(x+y) (x+y+z)-x3-y3-z3
=>3(x+y) (xy+xz+yz+z2)
=>3(x+y)[x(y+z)+z(y+z)]
=3(x+y) (y+z) (x+z)
Áp dụng hằng đẳng thức trên ta có:
3(a+b-c+b+c-a) (b+c-a+c+a-b) (a+b-c+c+a-b)
=3.2b.2c.2a
=24abc
mk sẽ chỉ hướng để bạn làm bài
đầu tiên ta sẽ nhóm [ (a+b+c)3-(a+b+c)3 ] ở đây ta thấy có hằng đẳng thức
- [ (b+c-a)3 + ( c+a-b)3 ] đây cũng vậy
sau khi khai triển ta sẽ rút gọn sẽ có nhân tử là 2c
a) a3+a2c-abc+b2c+b3 =(a3+b3)+(a2c-abc+b2c)=(a+b)(a2-ab+b2)+c(a2-ab+b2)=(a2-ab+b2)(a+b-c)
b) x3-7x-6 = x3+x2-x2-x-6x-6=x2(x+1)-x(x+1)-6(x+1)=(x+1)(x2-x-6)=(x+1)(x-3)(x+2)
c) x3-x2-14x+24=x3-2x2+x2-2x-12x+24=x2(x-2)+x(x-2)-12(x-2)=(x-2)(x2+x-12)=(x-2)(x+4)(x-3)
Ta có: \(a^3\left(b-c\right)+b^3.\left(c-a\right)+c^3\left(a-b\right).\)
\(=a^3b-a^3c+b^3c-b^3a+c^3.\left(a-b\right)\)
\(=\left(a^3b-ab^3\right)-\left(a^3c-b^3c\right)+c^3\left(a-b\right)\)
\(=ab.\left(a^2-b^2\right)-c\left(a^3-b^3\right)+c^3\left(a-b\right)\)
\(=ab.\left(a-b\right).\left(a+b\right)-c\left(a-b\right)\left(a^2+ab+b^2\right)+c^3\left(a-b\right)\)
\(=\left(a-b\right).\left(a^2b+ab^2\right)-\left(a-b\right)\left(a^2c+abc+b^2c\right)+c^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2b+ab^2-a^2c-abc-b^2c+c^3\right)\)
\(=\left(a-b\right)\text{[}\left(a^2b-abc\right)+\left(ab^2-b^2c\right)-\left(a^2c-c^3\right)\)
\(=\left(a-b\right).\text{[}ab.\left(a-c\right)+b^2\left(a-c\right)-c\left(a^2-c^2\right)\text{]}\)
\(=\left(a-b\right).\text{[}ab\left(a-c\right)+b^2\left(a-c\right)-c\left(a+c\right)\left(a-c\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(ab+b^2-ac-c^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\text{[}\left(ab-ac\right)+\left(b^2-c^2\right)\text{]}\)
\(=\left(a-b\right)\left(a-c\right)\text{[}a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\text{]}\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)\)
Vậy \(a^3.\left(b-c\right)+b^3.\left(c-a\right)+c^3.\left(a-b\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)\)
\(\left(a+b+c\right)^3-a^3-\left(b^3+c^3\right)=\left(b+c\right)\left[\left(a+b+c\right)^2+a\left(a+b+c\right)+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)\(=\left(b+c\right)\left(3a^2+3ab+3bc+3ca\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=a^3+3a\left(b+c\right)\left(a+b+c\right)+\left(b+c\right)^3-a^3-b^3-c^3\)
\(=3\left(b+c\right)\left(a^2+ab+ac\right)+b^3+3bc\left(b+c\right)+c^3-b^3-c^3\)
\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)
\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)