K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

Ta có: \(a^3\left(b-c\right)+b^3.\left(c-a\right)+c^3\left(a-b\right).\)

\(=a^3b-a^3c+b^3c-b^3a+c^3.\left(a-b\right)\)

\(=\left(a^3b-ab^3\right)-\left(a^3c-b^3c\right)+c^3\left(a-b\right)\)

\(=ab.\left(a^2-b^2\right)-c\left(a^3-b^3\right)+c^3\left(a-b\right)\)

\(=ab.\left(a-b\right).\left(a+b\right)-c\left(a-b\right)\left(a^2+ab+b^2\right)+c^3\left(a-b\right)\)

\(=\left(a-b\right).\left(a^2b+ab^2\right)-\left(a-b\right)\left(a^2c+abc+b^2c\right)+c^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2b+ab^2-a^2c-abc-b^2c+c^3\right)\)

\(=\left(a-b\right)\text{[}\left(a^2b-abc\right)+\left(ab^2-b^2c\right)-\left(a^2c-c^3\right)\)

\(=\left(a-b\right).\text{[}ab.\left(a-c\right)+b^2\left(a-c\right)-c\left(a^2-c^2\right)\text{]}\)

\(=\left(a-b\right).\text{[}ab\left(a-c\right)+b^2\left(a-c\right)-c\left(a+c\right)\left(a-c\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(ab+b^2-ac-c^2\right)\)

\(=\left(a-b\right)\left(a-c\right)\text{[}\left(ab-ac\right)+\left(b^2-c^2\right)\text{]}\)

\(=\left(a-b\right)\left(a-c\right)\text{[}a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\text{]}\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)\)

Vậy \(a^3.\left(b-c\right)+b^3.\left(c-a\right)+c^3.\left(a-b\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)\)

18 tháng 8 2019

Trả lời

P=(a+b+c)3-(a+b-c)3-(b+c-a)3-(c+a-b)3

Đặt a+b-c=x,    b+c-a=y,    c+a-b=z

=>(a+b+c)3-x3-y3-z3

Có x+y+z=a+b-c+b+c-a+c+a-b=a+b+c

=>(x+y+z)3-x3-y3-z3

=>[ (x+y)+z3 ]-x3-y3-z3

=>(x+y)3+z3+3z(x+y) (x+y+z)-x3-y3-z3

=>x3+y3+3xy(x+y)+z3+3z(x+y) (x+y+z)-x3-y3-z3

=>3(x+y) (xy+xz+yz+z2)

=>3(x+y)[x(y+z)+z(y+z)]

=3(x+y) (y+z) (x+z)

Áp dụng hằng đẳng thức trên ta có:

3(a+b-c+b+c-a) (b+c-a+c+a-b) (a+b-c+c+a-b)

=3.2b.2c.2a

=24abc

mk sẽ chỉ hướng để bạn làm bài

đầu tiên ta sẽ nhóm [ (a+b+c)3-(a+b+c)3 ]   ở đây ta thấy có hằng đẳng thức

                                 - [ (b+c-a)3 + ( c+a-b)3 ]    đây cũng vậy 

                sau khi khai triển ta sẽ rút gọn sẽ có nhân tử là  2c 

4 tháng 8 2017

Bạn phân tích bình thường rồi rút gọn

9 tháng 7 2018

\(=a^3+3a\left(b+c\right)\left(a+b+c\right)+\left(b+c\right)^3-a^3-b^3-c^3\)

\(=3\left(b+c\right)\left(a^2+ab+ac\right)+b^3+3bc\left(b+c\right)+c^3-b^3-c^3\)

\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)

\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

23 tháng 10 2019

Câu hỏi của Access_123 - Toán lớp 8 - Học toán với OnlineMath

4 tháng 10 2019

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)+b\left[\left(c^3-b^3\right)-\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(b^3-c^3\right)\left(a-b\right)-\left(a^3-b^3\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(b^2+ac+c^2\right)\left(a-b\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(b^2+ac+c^2-a^2-ab-b^2\right)\)

28 tháng 6 2016

(a+b+c)3-a3-b3-c3

=c3+(3a+3b)c2+(3b2+6ab+3a2)c+b3+3ab2+3a2b+a3-a3-b3-c3

=(3b+3a)c^2+(3b2+6ab+a2)c+3ab2+3a2

=3(b+a)(c+a)(c+b)