...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Áp dụng bdt Cauchy-Schwars

\(\frac{1}{a}+\frac{4}{b}+\frac{9}{c}\ge\frac{\left(1+2+3\right)^2}{a+b+c}=36\)

"=" <=> \(\left\{{}\begin{matrix}\frac{1}{a}=\frac{2}{b}=\frac{3}{c}\\a+b+c=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{6}\\b=\frac{1}{3}\\c=\frac{1}{2}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(1=\frac{1}{a}+\frac{4}{b}+\frac{9}{c}=\frac{9}{9a}+\frac{36}{9b}+\frac{9}{c}\geq \frac{(3+6+3)^2}{9a+9b+c}\)

\(\Rightarrow P\geq 144\)

Vậy $P_{\min}=144$

Dấu "=" xảy ra khi $\frac{3}{9a}=\frac{6}{9b}=\frac{3}{c}$ hay $a=4; b=8; c=36$

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

7 tháng 3 2019

\(a+b+c=3\)\(\Rightarrow c=3-a-b\Rightarrow-c=a+b-3\)

Ta có:

\(P=\frac{1}{a}+\frac{1}{b}-c=\frac{1}{a}+\frac{1}{b}+a+b-3\)

\(P=\sqrt{\frac{1}{a}}^2-2.\sqrt{\frac{1}{a}}.\sqrt{a}+\sqrt{a}^2+\sqrt{\frac{1}{b}^2}-2.\sqrt{\frac{1}{b}}.\sqrt{b}^2+1\)

\(P=\left(\sqrt{\frac{1}{a}}-\sqrt{a}\right)^2+\left(\sqrt{\frac{1}{b}}-\sqrt{b}\right)^2+1\ge1\)

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)

12 tháng 4 2020

Ta có: \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2ab+2ac\right)}=2\cdot\sqrt{2\left(a+b\right)\left(a+2c\right)}\)

\(\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)

Tương tự\(\hept{\begin{cases}\sqrt{8b^2+56}\le2a+3b+2c\\\sqrt{4c^2+7}=\sqrt{4c^2+ab+2ac+2bc}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\end{cases}}\)

=> Q>

Dấu "=" <=> \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)

26 tháng 4 2020

Rất tiếc là chưa :((

NV
27 tháng 4 2020

Bài này muốn tìm được điểm rơi 1 cách chính xác thì phải sử dụng cực trị có điều kiện của hàm 3 biến, kiểu đạo hàm ở đại học.

8 tháng 7 2021

Ta có : \(x+y\left(2+3x\right)=3\Leftrightarrow y=\frac{3-x}{3x+2}\)  ( vì x > 0 ) 

Khi đó : \(x+y=x+\frac{3-x}{3x+2}=\frac{3x^2+x+3}{3x+2}=A\) 

Chứng minh được :  \(A\ge\frac{-3+2\sqrt{11}}{3}\) => ... 

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH