K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

19 tháng 2 2022

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi

9 tháng 2 2022

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

\(\Rightarrow\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}\cdot\frac{b+c}{4bc}}=\frac{1}{a}\)

\(\Rightarrow\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge2\sqrt{\frac{ca}{b^2\left(c+a\right)}\cdot\frac{c+a}{4ca}}=\frac{1}{b}\)

\(\Rightarrow\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}\cdot\frac{a+b}{4ab}}=\frac{1}{c}\)

Cộng theo vế các bất đẳng thức trên ta được:

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}+\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)nên:

\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) 

hay\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Bất đẳng thức xảy ra khi \(a=b=c\)

10 tháng 2 2022

bạn giỏi quá

Nguyễn Đăng Nhân

19 tháng 2 2022

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)

Hoàn toàn tương tự ta có:

\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);

\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo bất đẳng thức trên ta được:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{1}{6\left(ab+bc+ca\right)}\)

Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)

Hi  :DSau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vàoCâu 1:Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)Câu 2:Với a,b,c là các số thực dương và \(abc=1\).Chứng minh...
Đọc tiếp

Hi  :D

Sau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vào

Câu 1:

Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:

\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)

Câu 2:

Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:

\(\frac{1}{\sqrt{4a^2+a+4}}+\frac{1}{\sqrt{4b^2+b+4}}+\frac{1}{\sqrt{4c^2+c+4}}\le1\left(\cdot\cdot\right)\)

Câu 3:

Với a,b,c,d là các số thực dương và \(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1\).Chứng minh rằng:

\(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}+\frac{d}{d^2+2}\le1\left(\cdot\cdot\cdot\right)\)

Câu 4:

Với a,b,c,d thõa mãn điều kiện \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\),Chứng minh rằng:

\(2\left(a+b+c+d\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}+\sqrt{d^2+3}\left(\cdot\cdot\cdot\cdot\right)\)

Câu 5:

Với a,b,c là các số thực không âm.Chứng minh rằng:

\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{a^2+2b^2+c^2}+\frac{c^2-ab}{a^2+b^2+2c^2}\ge0\left(\cdot\cdot\cdot\cdot\cdot\cdot\right)\)

 

Continue...

 

 

1
31 tháng 5 2020

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)

Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:

Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:

\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)

Đây là điều hiển nhiên.

13 tháng 8 2020

đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

áp dụng bđt Bunhiacopxki dạng phân thức ta được

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)

phép chứng minh sẽ hoàn tất nếu ta chứng minh được

\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

hay ta cần chứng minh

\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)

khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh

16 tháng 2 2021

giúp với 

3 tháng 9 2016

1)ĐK:\(x\in\left[-3;\frac{6}{5}\right]\)

pt\(\Leftrightarrow3\left(x^2-x+2\right)-3\left[\sqrt{6-5x}-\left(x-2\right)\right]+\left[3\sqrt{x+3}-\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x^2-x+2\right)\left(\frac{3}{\sqrt{6-5x}+x-2}+\frac{1}{3\sqrt{x+3}+x+5}+3\right)=0\)

\(\Leftrightarrow x^2\)-x+2=0(do(...)>0)

\(\Leftrightarrow x=-2\)hoặc \(x=1\)(t/m)

3 tháng 9 2016

ÁD BĐT Bunhiacopxki:

\(\left(a+b+c\right)\left[\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right]\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)

Lại có:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

\(=\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\ge\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\)

\(\Rightarrow VT\ge\left(\frac{3}{2}\right)^2\)=\(\frac{9}{4}\)(đpcm)

Dấu''='' xảy ra\(\Leftrightarrow a=b=c=\frac{1}{3}\)

NV
16 tháng 11 2019

\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)

Dấu "=" xảy ra khi \(a=b=c=2\)

\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

NV
30 tháng 12 2020

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

NV
30 tháng 12 2020

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)