\(a+b=\frac{1}{a^2}+\frac{1}{b^2}\). Tìm giá trị nhỏ n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

23 tháng 12 2016

a)\(B=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

Áp dụng BĐT AM-GM ta có:

\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}\cdot8ab}-\left(a+b\right)^2=7\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_B=7\) khi \(a=b=\frac{1}{2}\)

b)\(C\ge\frac{1}{1-3ab\left(a+b\right)}+\frac{4}{ab\left(a+b\right)}\)

\(\ge\frac{16}{1-3ab\left(a+b\right)+3ab\left(a+b\right)}+\frac{1}{\frac{\left(a+b\right)^3}{4}}\ge16+4=20\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_C=20\) khi \(a=b=\frac{1}{2}\)

 

 

24 tháng 12 2016

thanks

8 tháng 4 2016

Ta có \(x^3+y^3\ge\frac{1}{4}\left(x+y\right)^3;xy\le\left(\frac{x+y}{2}\right)^2\) với mọi \(x,y>0\)

Kết hợp với giả thiết suy ra :

\(\frac{1}{4}\left(a+b+c\right)^3\le\left(a+b\right)^3+c^3\le4\left(a^3+b^3\right)+c^3\le2\left(a+b+c\right)\left(\frac{\left(a+b+c\right)^2}{4}-2\right)\)

\(\Rightarrow a+b+c\ge4\)

Khi đó sử dựng bất đẳng thức AM-GM ta có :

\(\frac{2a^2}{3a^2+b^2+2a\left(c+2\right)}=\frac{a}{a+c+2+\left(\frac{b^2}{2a}+\frac{a}{2}\right)}\le\frac{a}{a+c+2+2\sqrt{\frac{b^2}{2a}.\frac{a}{2}}}=\frac{a}{a+b+c+2}\)

Và \(\left(a+b\right)^2+c^2\ge\frac{1}{2}\left(a+b+c\right)^2\)

Suy ra \(P\le\frac{a+b+c}{a+b+c+2}-\frac{\left(a+b+c\right)^2}{32}\)

Đặt \(t=a+b+c\ge4,P\le f\left(t\right)=\frac{t}{t+2}-\frac{t^2}{32}\)

Ta có : \(f'\left(t\right)=\frac{2}{\left(t+2\right)^2}-\frac{t}{16}=\frac{32-t\left(t+2\right)^2}{16\left(t+2\right)^2}<0\) với mọi \(t\ge4\)

Suy ra hàm số \(f'\left(t\right)\) nghịch biến trên \(\left(4;+\infty\right)\). Do đó \(P\le f\left(t\right)\le f\left(4\right)=\frac{1}{6}\)

Dấu = xảy ra khi và chỉ khi \(\begin{cases}a=b;a+b=c\\a+b+c=4\end{cases}\) \(\Leftrightarrow a=b=1,c=2\)

Vậy giá trị lớn nhất của P bằng \(\frac{1}{6}\)

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)

8 tháng 7 2020

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

8 tháng 7 2020

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a^2}{a+2b}+\frac{b^2}{2a+b}\geq \frac{(a+b)^2}{a+2b+2a+b}=\frac{(a+b)^2}{3(a+b)}=\frac{a+b}{3}=\frac{1}{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{a}{a+2b}=\frac{b}{2a+b}\\ a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Bài 2:

Vì $x+y=2019$ nên $2019-x=y; 2019-y=x$

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{x}{\sqrt{2019-x}}+\frac{y}{\sqrt{2019-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{x}}\geq \frac{(x+y)^2}{x\sqrt{y}+y\sqrt{x}}\)

Mà theo BĐT AM-GM và Bunhiacopxky:

\((x\sqrt{y}+y\sqrt{x})^2\leq (xy+yx)(x+y)=2xy(x+y)\leq \frac{(x+y)^2}{2}.(x+y)=\frac{(x+y)^3}{2}\)

\(\Rightarrow P\geq \frac{(x+y)^2}{\sqrt{\frac{(x+y)^3}{2}}}=\sqrt{2(x+y)}=\sqrt{2.2019}=\sqrt{4038}\)

Vậy \(P_{\min}=\sqrt{4038}\Leftrightarrow x=y=\frac{2019}{2}\)

8 tháng 7 2020

Áp dụng AM - GM 

\(P=\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{c^2+a^2}}\ge\frac{1}{\sqrt{2ab}}+\frac{1}{\sqrt{2bc}}+\frac{1}{\sqrt{2ca}}\)

\(abc=a+b+c+2\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)\ge\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

Với mọi số thực x,y,z ta có ngay:

\(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{1+\frac{y+z}{x}}+\frac{1}{1+\frac{z+x}{y}}+\frac{1}{1+\frac{x+y}{z}}=1\)

Khi đó ta có thể đặt được \(\left(a;b;c\right)\rightarrow\left(\frac{y+z}{x};\frac{z+x}{y};\frac{x+y}{z}\right)\) 

Thay vào thì dễ có:

\(\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(z+y\right)\left(x+y\right)}}\)

\(\le\frac{1}{2}\Sigma\left(\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)

Vậy ...........................