K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

 12x^3+16x^2-5x-3 = 12x3+18x-2x2-3x -2x -3

= 12x2(x +3/2) -2x(x+3/2) -2(x+3/2)

=(12x2-2x-2)(x+3/2)

=2(6x2-x-1)(x+3/2)

=2[6x(x+1/3)-3(x+1/3)](x+3/4)

=2(6x-3)(x+1/3)(x+3/4)

=6(2x-1)(x+1/3)(x+3/4)

28 tháng 3 2018

k cho mk  nha

7,      4x mũ 2 - 12x + 9 - y mũ 2 =  -(y-2x+3) (y+2x-3)

8,      16x mũ 2 - 4y mũ 2 + 4y - 1 =   -(2y - 4x - 1) (2y+4x-1)

9,        25 - x mũ 2 - 12x - 36 =  -(x+1) (x+11)

10,        x mũ 2 - 9 - 5 ( x + 3 ) =  (x-8) (x+3)

bạn k cho mình nha 

chúc bạn học tốt :))))

8 tháng 8 2021

bạn kham khảo link, mình đã làm rồi nhé

Câu hỏi của Phạm Đỗ Bảo Ngọc - Toán lớp 8 - Học trực tuyến OLM 

NV
2 tháng 3 2019

\(12x^3+16x^2-5x-3=12x^3+12x^2-9x+4x^2+4x-3\)

\(=3x\left(4x^2+4x-3\right)+\left(4x^2+4x-3\right)\)

\(=\left(3x+1\right)\left(4x^2+4x-3\right)=\left(3x+1\right)\left(4x^2+6x-2x-3\right)\)

\(=\left(3x+1\right)\left(2x\left(2x+3\right)-\left(2x+3\right)\right)\)

\(=\left(3x+1\right)\left(2x-1\right)\left(2x+3\right)\)

3 tháng 3 2019

Mơn bn nà❤

12 tháng 10 2015

a,X^3-16x =x(x^2-16)

b,y(y-2)-3(y-2)=(y+3).(y-2)

c,x^2+4x+4-y^2=(x+2)^2-y^2=(x+y+2).(x+2-Y)

D,4^2y^3-12x^2y^4+16X^5y^3=4x^2y^2(y-3y^2+4X^3y)

8 tháng 8 2021

6, \(x^2-1+2xy+y^2=\left(x+y\right)^2-1=\left(x+y-1\right)\left(x+y+1\right)\)

7, \(4x^2-12x+9-y^2=\left(2x-3\right)^2-y^2=\left(2x-3-y\right)\left(2x-3+y\right)\)

8, \(16x^2-4y^2+4y-1=16x^2-\left(2y-1\right)^2=\left(4x-2y+1\right)\left(4x+2y-1\right)\)

9, \(25-x^2-12x-36=25-\left(x+6\right)^2=\left(5-x-6\right)\left(5+x+5\right)=-\left(x+1\right)\left(x+10\right)\)

10, \(x^2-9-5\left(x+3\right)=\left(x-3\right)\left(x+3\right)-5\left(x+3\right)=\left(x+3\right)\left(x-8\right)\)

31 tháng 10 2017

Hỏi đáp Toán

31 tháng 10 2017

a) 3x2 - 3y2 - 12x + 12x

= 3( x2 - y2- 4x + 4x )

= 3( x - y)( x + y)

b) 4x3 + 4xy2 + 8x2y - 16x

= 4x( x2 + y2 + 2xy - 4)

= 4x[( x + y)2 - 22]

= 4x( x + y - 2)( x + y +2)

c) x4 - 5x2 + 4

= ( x2)2 - 2.2x2 + 22 - x2

= ( x2 - 2)2 - x2

= ( x2 - 2 - x)( x2 - 2 + x)

13 tháng 3 2016

Giúp với

27 tháng 7 2023

chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn

 

27 tháng 7 2023

câu 1: 9\(x^2\) + 12\(x\) + 5  =11

           (3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11

           (3\(x\) + 2)2      =  11 - 1

             (3\(x\) + 2)2    = 10

               \(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)

                \(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)

                  \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)

                 Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)

  Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)

              6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0

              4\(x^2\) + 16\(x\) + 12 = 0

              (2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0

               (2\(x\) + 4)2   = 4

               \(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\) 

                \(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)

                 \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

              S = { -3; -1}

3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5

    16\(x^2\) + 22\(x\) - 6\(x\)  + 11 - 5 = 0

     16\(x^2\) + 16\(x\) + 6 = 0

      (4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0

       (4\(x\) + 2)2 + 2 = 0 (1) 

Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm

             S = \(\varnothing\)

Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\) 

            12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0

            9\(x^2\) + 24\(x\) + 10 = 0

           (3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0

          (3\(x\) + 4)2 = 6

            \(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)

              \(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)

                    S = {\(\dfrac{-\sqrt{6}-4}{3}\)\(\dfrac{\sqrt{6}-4}{3}\)}