K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

áp dụng định lý berzout ta có:

=>f(-5)=2

     f(-5)= 3 x 52 - 5a +27 = 2

     =>  3 x 52 - 5a +27 = 2

 =>a=20

8 tháng 6 2021

(a + 3)x + 27 x + 5 a + 3 (a + 3)x + 5a + 15 -5a + 12

Vậy đa thức dư là : \(-5a+12=2\Leftrightarrow a=2\)

Ps : đề thiếu rồi, bạn kiểm tra lại nhé 

9 tháng 6 2021

Sửa đề: Nếu \(3x^2+ax+27\)chia hết cho x+5 dư 2 thì đa thức dư .Có cái đề viết cũng khong xong :)))

Gọi\(f\left(x\right)=3x^2+ax+27\)

Áp dụng định lí Bezoute ta được:

\(f\left(x\right)\div x+5\)dư 2

Với \(x=-5\)thì ta được:

\(\Rightarrow f\left(-5\right)=2\)

Thay x=-5 vào f(x) ta được
\(3.\left(-5\right)^2+\left(-5\right)a+27=2\)

\(\Rightarrow75-5a+27=2\)

\(\Rightarrow102-5a=2\)

\(\Rightarrow-5a=-100\)

\(\Rightarrow a=20\)

\(\Rightarrow f\left(x\right)=3x^2+20x+27\)

Vậy đa thức dư là \(f\left(x\right)=3x^2+20x+27\)

AH
Akai Haruma
Giáo viên
18 tháng 8 2024

Lời giải:

Theo định lý Bê-du về phép chia đa thức:

Số dư của $A(x)$ khi chia cho $x+1$ là:

$A(-1)=(-1)^3+a(-1)^2+b(-1)+2=-1+a-b+2=5$

$\Rightarrow a-b=4(1)$

Số dư của $A(x)$ khi chia cho $x+2$ là:
$A(-2)=(-2)^3+a(-2)^2+b(-2)+2=-8+4a-2b+2=8$

$\RIghtarrow 4a-2b=14$

$\Rightarrow 2a-b=7(2)$

Từ $(1); (2)\Rightarrow a=3; b=-1$

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Lời giải:

Áp dụng định lý Bê-du về phép chia đa thức

a)

Số dư của phép chia đa thức \(f(x)=2x^3-3x^2+x+a\) cho $x+2$ là:

\(f(-2)=2(-2)^3-3(-2)^2+(-2)+a=-30+a\)

Để phép chia là chia hết thì số dư bằng $0$

Hay $-30+a=0$ suy ra $a=30$

b) Số dư của phép chia đa thức $f(x)=2x^2+ax+1$ cho $x-3$ là:

\(f(3)=2.3^2+3a+1=19+3a\)

Số dư bằng $4$ \(\Leftrightarrow 19+3a=4\Rightarrow a=-5\)

20 tháng 12 2019

bơ du chứ ko phải bê du nha pn

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :)))