K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 8 2024

Lời giải:

Theo định lý Bê-du về phép chia đa thức:

Số dư của $A(x)$ khi chia cho $x+1$ là:

$A(-1)=(-1)^3+a(-1)^2+b(-1)+2=-1+a-b+2=5$

$\Rightarrow a-b=4(1)$

Số dư của $A(x)$ khi chia cho $x+2$ là:
$A(-2)=(-2)^3+a(-2)^2+b(-2)+2=-8+4a-2b+2=8$

$\RIghtarrow 4a-2b=14$

$\Rightarrow 2a-b=7(2)$

Từ $(1); (2)\Rightarrow a=3; b=-1$

23 tháng 12 2019

Giải:

Gọi q(x); g(x) lần lượt là thương của phép chia f(x) cho x-2; f(x) cho x^2-1

=> f(x)= q(x)(x-2)

và f(x)= g(x)(x^2-1) + 2x

=> f(2) = 8+4a+2b+c=0

f(1)= 1+a+b+c=2

f(-1)= -1+a-b+c= -2

từ các hệ thức trên ta tìm được: a= -10/3; b= 1;c=10/3

4 tháng 8 2022

Sai òi bn ơi, bài này a=-3;c=-3 mà nhỉ =)🤨

26 tháng 6 2015

\(P=\left(x^2+mx+1\right)^2\) hoặc \(P=\left(x^2+mx-1\right)\)do hệ số \(x^4\)là 1; hệ số tự do là 1

+Với \(P=\left(x^2+mx+1\right)^2=x^4+2mx^3+\left(m^2+2\right)x^2+2mx+1=x^4+ax^3+bx^2-8x+1\)\(\Rightarrow2m=-8;a=2m;b=m^2+2\)

\(\Rightarrow m=-4;a=-8;b=18\)

+Với 

\(P=\left(x^2+mx-1\right)^2=x^4+2mx^3+\left(m^2-2\right)x^2-2mx+1\)

Làm tương tự được m = 4; a = 8; b = 14

11 tháng 10 2018

Em tham khảo bài có cách làm tương tự ở link dưới đây:

Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath