K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2021

(a + 3)x + 27 x + 5 a + 3 (a + 3)x + 5a + 15 -5a + 12

Vậy đa thức dư là : \(-5a+12=2\Leftrightarrow a=2\)

Ps : đề thiếu rồi, bạn kiểm tra lại nhé 

9 tháng 6 2021

Sửa đề: Nếu \(3x^2+ax+27\)chia hết cho x+5 dư 2 thì đa thức dư .Có cái đề viết cũng khong xong :)))

Gọi\(f\left(x\right)=3x^2+ax+27\)

Áp dụng định lí Bezoute ta được:

\(f\left(x\right)\div x+5\)dư 2

Với \(x=-5\)thì ta được:

\(\Rightarrow f\left(-5\right)=2\)

Thay x=-5 vào f(x) ta được
\(3.\left(-5\right)^2+\left(-5\right)a+27=2\)

\(\Rightarrow75-5a+27=2\)

\(\Rightarrow102-5a=2\)

\(\Rightarrow-5a=-100\)

\(\Rightarrow a=20\)

\(\Rightarrow f\left(x\right)=3x^2+20x+27\)

Vậy đa thức dư là \(f\left(x\right)=3x^2+20x+27\)

9 tháng 6 2021

áp dụng định lý berzout ta có:

=>f(-5)=2

     f(-5)= 3 x 52 - 5a +27 = 2

     =>  3 x 52 - 5a +27 = 2

 =>a=20

6 tháng 1 2022

\(\left(3x^3+ax+27\right)⋮\left(x+5\right)\\ \Leftrightarrow3x^3+ax+27=\left(x+5\right)\cdot a\left(x\right)\)

Thay \(x=-5\Leftrightarrow-375-5a+27=0\\ \Leftrightarrow-5a=348\Leftrightarrow a=-\dfrac{348}{5}\)

10 tháng 12 2017

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

AH
Akai Haruma
Giáo viên
9 tháng 9 2018

2.

Ta thấy $x^2+2x+1=(x+1)^2$

Để $x^4+ax^2+1$ chia hết cho $x^2+2x+1$ thì trước tiên nó phải chia hết cho $x+1$, tức là số dư khi thực hiện phép chia là $0$

Áp dụng định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=x^4+ax^2+1$ cho $x+1$ là:

\(f(-1)=(-1)^4+a(-1)^2+1=1+a+1=0\Leftrightarrow a=-2\)

Thử lại:

\(x^4+ax^2+1=x^4-2x^2+1=(x^2-1)^2=(x-1)^2(x+1)^2\vdots (x+1)^2\) (thỏa mãn)

Vậy $a=-2$

3)

Theo định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=3x^2+ax+27$ cho $x+5$ là

\(f(-5)=3(-5)^2+a(-5)+27=102-5a\)

Để số dư bằng $2$ thì \(102-5a=2\Rightarrow a=20\)

11 tháng 11 2017

a) Để P(x) chia hết cho Q(x)=2x-1 thì \(P(\dfrac{1}{2})\)=0

<=> \(P(\dfrac{1}{2})= a.(\dfrac{1}{2})^{3} -3.(\dfrac{1}{2})^{2} +a.\dfrac{1}{2}-1=0\)

<=> \(a.\dfrac{1}{8} -\dfrac{3}{4}+a.\dfrac{1}{2}-1=0\)

<=> \(\dfrac{5}{8}.a = \dfrac{7}{4}\)

<=> \(a= \dfrac{14}{5}\)

Vậy \(a=\dfrac{14}{5} thì\) P(x) chia hết cho Q(x)

Chúc bạn học tốt!!!!!😄

11 tháng 11 2017

mình cảm ơn bạn đã giúp mình giải bài toán này

7 tháng 8 2018

 a) Có : 3x\(^2\)+ax + 27 : x+5 dư 2

=> 3x\(^2\) + ax + 27 = (x+5) . A(x) +2 với mọi x

=> 3x\(^2\)+ax+ 25 = (x+5) .A (x) với mọi x

Với x = -5 ta có :

3.(-5)\(^2\)+a(-5) +25= (-5+5).A(-5)

=> 100 + a(-5) = 0

=> a= 20

Vậy a= 20 thì \(3x^2\) + ax+27 chia x+5 dư 2

7 tháng 8 2018

a) thuc hien phep chia \(3x^2+ax+27\)chia cho x+5 co thuong la 3x+(a-5) va so du la 102-5a

\(\Rightarrow102-5a=2\Rightarrow a-20\)

b) thuc hien phep chia \(2x^2+ax+1\)chia cho x-3 cho thuong la 2x+(a+6) va so du la 19+3a

\(\Rightarrow19+3a=1\Rightarrow a=-6\)

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

20 tháng 3 2017

a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)

Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:

\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)

<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5

20 tháng 3 2017

lười quá ~~

bài 1

vì đa thức bị chia bậc 2, đa thức chia bậc nhất

=> đa thức thương sẽ có dạng bx+c

theo đề ta có

\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)

vậy a = -5

bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé