Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.5^n=375\)
\(\Leftrightarrow5^n=375:3\)
\(\Leftrightarrow5^n=125=5^3\)
vậy \(n=3\)
hok tốt
\(3.5^n=375\)
\(\Rightarrow5^n=375:3\)
\(\Rightarrow5^n=125=5^3\)
\(\Rightarrow n=3\)
a: Xét ΔAHE vuông tại E và ΔAHI vuông tại I có
AH chung
góc EAH=góc IAH
=>ΔAHE=ΔAHI
b: HE=HI
=>HN=HM
Xét ΔAHN và ΔAHM có
AH chung
góc NHA=góc MHA
HN=HM
=>ΔAHN=ΔAHM
=>AN=AM
=>AH là trung trực của MN
=>AH vuông góc MN
Em nhân hệ số với hệ số, biến nhân biến (cùng chữ á)
(xo)2 thì đưa về bằng 12
Em tự làm thử nhé, anh sẽ sửa!
\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}.\left(5.2-3^2\right)}{2^{28}.3^{18}.\left(5.3-7.2\right)}\)
\(=\frac{2^{29}.3^{18}.1}{2^{28}.3^{18}.1}\)
\(=2\)
\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9}{5.2^9.2^{19}.3^{19}-7.2^{29}.\left(3^3\right)^6}\)
\(=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{29}.2.3^{18}-2^{29}.3^{18}.3^2}{5.2^{28}.3^{18}.3-7.2^{28}.2.3^{18}}\)
\(=\frac{2^{29}.3^{18}.\left(5.2-3^2\right)}{2^{28}.3^{18}.\left(5.3-7.2\right)}\)
\(=\frac{2^{29}.3^{18}.\left(10-9\right)}{2^{28}.3^{18}.\left(15-14\right)}\)
\(=\frac{2^{29}.3^{18}}{2^{28}.3^{18}}\)
\(=\frac{2^{28}.2.3^{18}}{2^{28}.3^{18}}\)
\(=2\)
Sửa đề: \(\dfrac{1}{1.9}\rightarrow\dfrac{9}{9.19}\)
Giải:
\(N=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{2019.2029}\)
\(N=\dfrac{9}{10}.\left(\dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{2019.2029}\right)\)
\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{2019}-\dfrac{1}{2029}\right)\)
\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{2029}\right)\)
\(N=\dfrac{9}{10}.\dfrac{2020}{18261}\)
\(N=\dfrac{202}{2029}\)