Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=\frac{9}{9.19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)
\(=\frac{200}{2009}\)
Gọi \(B=\frac{9}{19}+A\)
\(A=\frac{9}{19\cdot29}+\frac{9}{29\cdot39}+...+\frac{9}{1999\cdot2009}\)
\(\frac{A}{9}=\frac{1}{19\cdot29}+\frac{1}{29\cdot39}+...+\frac{1}{1999\cdot2009}\)
\(\frac{A\cdot10}{9}=\frac{10}{19+29}+\frac{10}{29\cdot39}+...+\frac{10}{1999\cdot2009}\)
\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\)
\(\frac{A\cdot10}{9}=\frac{1}{19}-\frac{1}{2009}\)
\(A=\frac{1791}{38171}\)
\(\Rightarrow B=\frac{1}{19}+\frac{1791}{38171}\)
\(\Rightarrow B=\frac{200}{2009}\)
\(A=\frac{1}{19}+\frac{9}{19.29}+...+\frac{9}{1999.2009}\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)
đến đay bn tự tính nha
\(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(=9\left(\frac{1}{9.19}+\frac{1}{19.29}+...+\frac{1}{1999.2009}\right)=\frac{9}{10}\left(\frac{10}{9.19}+\frac{10}{19.29}+...+\frac{10}{1999.2009}\right)\)
\(=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)=\frac{9}{10}\cdot\frac{2000}{18081}=\frac{200}{2009}\)
Ta có: \(B=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(B=9\left(\frac{1}{9.19}+\frac{1}{19.29}+...+\frac{1}{1999.2009}\right)\)
\(B=\frac{9}{10}\left(\frac{10}{9.19}+\frac{10}{19.29}+...+\frac{10}{1999.2009}\right)\)
\(B=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{19}+\frac{1}{19}-\frac{1}{29}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(B=\frac{9}{10}\left(\frac{1}{9}-\frac{1}{2009}\right)\)
\(B=\frac{9}{10}.\frac{2000}{18081}\)
\(B=\frac{200}{2009}\)
Vậy \(B=\frac{200}{2009}\)
Sửa đề: \(\dfrac{1}{1.9}\rightarrow\dfrac{9}{9.19}\)
Giải:
\(N=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{2019.2029}\)
\(N=\dfrac{9}{10}.\left(\dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{2019.2029}\right)\)
\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{2019}-\dfrac{1}{2029}\right)\)
\(N=\dfrac{9}{10}.\left(\dfrac{1}{9}-\dfrac{1}{2029}\right)\)
\(N=\dfrac{9}{10}.\dfrac{2020}{18261}\)
\(N=\dfrac{202}{2029}\)
Ta có: \(A=\frac{1}{19}+\frac{9}{19.29}+\frac{9}{29.39}+...+\frac{9}{1999.2009}\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{10}{19.29}+\frac{10}{29.39}+...+\frac{10}{1999.2009}\right)\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{29}+\frac{1}{29}-\frac{1}{39}+...+\frac{1}{1999}-\frac{1}{2009}\right)\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}\left(\frac{1}{19}-\frac{1}{2009}\right)\)
\(\Rightarrow A=\frac{1}{19}+\frac{9}{10}.\frac{1990}{38171}\)
\(\Rightarrow A=\frac{1}{19}+\frac{1791}{38171}\)
\(\Rightarrow A=\frac{200}{2009}\)
Vậy \(A=\frac{200}{2009}.\)
200/2009