K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2023

Nó yêu cầu tìm điều kiện của m bạn ơi

AH
Akai Haruma
Giáo viên
11 tháng 6 2021

Lời giải:
a) Để 2 pt cùng có nghiệm thì:

\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)

b) 

Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:

Ta có:

\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)

\(\Rightarrow 5a=5m\Leftrightarrow a=m\)

Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$

$\Leftrightarrow m=0$ hoặc $m=3$

21 tháng 4 2023

- Gọi \(x_1\) là một nghiệm của phương trình (1). Khi đó ta có:

\(x_1^2-2mx_1+4m=0\left(1'\right)\).

Vì phương trình (2) có một nghiệm bằng 2 lần nghiệm của phương trình (1) nên \(2x_1\) là một nghiệm của phương trình (2). Do đó:

\(\left(2x_1\right)^2-m.\left(2x_1\right)+10m=0\)

\(\Rightarrow4x_1^2-2mx_1+10m=0\left(2'\right)\)

Thực hiện phép tính \(4.\left(1'\right)-\left(2'\right)\) vế theo vế ta được:

\(4x_1^2-8mx_1+16m-\left(4x_1^2-2mx_1+10m\right)=0\)

\(\Rightarrow-6mx_1+6m=0\)

\(\Rightarrow6m\left(-x_1+1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\x_1=1\end{matrix}\right.\)

*Với \(x_1=1\). Vì \(x_1=1\) là 1 nghiệm của phương trình (1) nên:

\(1^2-2m.1+4m=0\Leftrightarrow m=-\dfrac{1}{2}\)

Thử lại ta có \(m=0\) hay \(m=-\dfrac{1}{2}\).

NV
15 tháng 2 2022

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

NV
15 tháng 2 2022

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

Bài 1: 

a) Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot m\cdot\left(m+2\right)\)

\(\Leftrightarrow\Delta=4m^2-4m+1-4m^2-8m\)

\(\Leftrightarrow\Delta=-12m+1\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow-12m+1=0\)

\(\Leftrightarrow-12m=-1\)

hay \(m=\dfrac{1}{12}\)

b) Ta có: \(\Delta=\left(4m+3\right)^2-4\cdot2\cdot\left(2m^2-1\right)\)

\(\Leftrightarrow\Delta=16m^2+24m+9-16m^2+8\)

\(\Leftrightarrow\Delta=24m+17\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow24m+17=0\)

\(\Leftrightarrow24m=-17\)

hay \(m=-\dfrac{17}{24}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

20 tháng 4 2018

bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)

\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)

\(\Delta'=m^2-2m+1-m^2-m\)

\(\Delta'=-3m+1\)

để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)

b) \(3x^2+mx+m^2=0\)

\(\Delta=m^2-4.3.m^2\)

\(\Delta=m^2-12m^2=-11m^2\)

để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)

20 tháng 4 2018

c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)

\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)

\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)

để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)

\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)

\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)

\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )

\(\Leftrightarrow m>0\)

vậy \(m>0\)\(m\ne1\)