K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 6 2021

Lời giải:
a) Để 2 pt cùng có nghiệm thì:

\(\left\{\begin{matrix} \Delta'_1=16-4m\geq 0\\ \Delta_2=1+16m\geq 0\end{matrix}\right.\Leftrightarrow 4\geq m\geq \frac{-1}{16}\)

b) 

Gọi $2a,a$ lần lượt là nghiệm của PT $(1)$ và PT $(2)$:

Ta có:

\(\left\{\begin{matrix} (2a)^2-8.2a+4m=0\\ a^2+a-4m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2-4a+m=0\\ a^2+a-4m=0\end{matrix}\right.\)

\(\Rightarrow 5a=5m\Leftrightarrow a=m\)

Thay vô: $m^2+m-4m=0\Leftrightarrow m^2-3m=0$

$\Leftrightarrow m=0$ hoặc $m=3$

21 tháng 6 2021

a) \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)

\(\Delta'=m^2+2m+1+m^2-4m=2m^2-2m+1\)

\(\Delta'=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\)

=> pt luôn có 2 nghiệm phân biệt

b) Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)

Theo bài ra, ta có: A = |x1 - x2|

A2 = (x1 - x2)2 = (x1 + x2)2 - 4x1x2

A2 = [2(m + 1)]2 - 4(4m - m2)

A2 = 4m2 + 8m + 4 - 8m  + 4m2 = 8m2 + 4 \(\ge\)4 với mọi m

Dấu "=" xảy ra <=> m = 0

Vậy MinA = 4 khi m = 0

21 tháng 6 2021

a) Xét \(\Delta'=\left(m+1\right)^2-\left(4m-m^2\right)=2m^2-2m+1=m^2+\left(m-1\right)^2>0\)với mọi m

Vậy pt trên luôn có 2 nghiệm phân biệt với mọi m

b) Gọi x1 ; x2 là 2 nghiệm của pt trên . Theo hệ thức Viet , ta có :

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m-m^2\end{cases}}\)

Xét \(A^2=\left|x_1-x_2\right|^2=\left(x_1+x_2\right)^2-4x_1x_2=4\left(m+1\right)^2-4\left(4m-m^2\right)\)

\(=8m^2-8m+4=2\left(4m^2-4m+1\right)+2=2\left(2m-1\right)^2+2\ge2\)

Dấu " = " xảy ra khi 2m - 1 = 0

Vậy \(A^2\ge2\Leftrightarrow A=\left|x_1-x_2\right|\ge\sqrt{2}\)

Dấu " = " xảy ra khi \(m=\frac{1}{2}\)

Do đó minA \(=\sqrt{2}\)khi \(m=\frac{1}{2}\)

22 tháng 11 2015

 

\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)

<=> (m.x3 - m) + (x- x) + (3mx- 3m) - (x- 1) = 0 

<=> m(x - 1)(x+ x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0 

<=> (x - 1).[m(x+ x+ 1) + x(x+1) + 3m(x+ 1) -  (x+1)] = 0 

<=> (x - 1).(mx2 + mx + m + x+ x + 3mx + 3m - x -  1) = 0 

<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0  (*)

b)  (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0  (1)

Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt 

<=> m+ 1 \(\ne\) 0 và  \(\Delta\)' > 0 và x1.x> 0 và x+ x< 0 trong đó x1; xlà hai nghiệm của (1)

+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1

+)  \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2  - 4m- 3m +  1 = -3m + 1 > 0 => m < 1/3

+) Theo hệ thức Vi ét ta có: x1 + x\(-\frac{4m}{m+1}\); x1.x\(\frac{4m-1}{m+1}\)

=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0 

=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m  và m + 1 cùng dấu

=> m > 0  hoặc m < -1

Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0  < m < 1/3

Vậy...

22 tháng 11 2015

đơn giản .tìm NCPT hoac TLCT gi do la co

7 tháng 5 2018

a)

 \(x^2-2\left(m+1\right)x+4m-m^2=0\)

Ta có : (a = 1 ; b = 2(m+1) ; b' = m + 1 ; c = 4m-m)

\(\Delta'=b'^2-ac\)

      =  \(\left(m+1\right)^2-1.\left(4m-m^2\right)\)

      =  m2 + 2m + 1   -4m +m2

     =  2m2   -2m + 1

     = 2 ( m-1)2     > 0 (phuong trinh luon co 2 nghien pb \(\forall m\)

 

7 tháng 5 2018

a) có \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)

\(=m^2+2m+1-4m+m^2\)

\(=2m^2-2m+1\)

\(=2\left(m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+1\right)\)

\(=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\forall m\)

\(\Rightarrow pt\) trên luôn có 2 nghiệm pb \(\forall m\)

b) ta có vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=4m-m^2\end{cases}}\)

theo bài ra \(A=\left|x_1-x_2\right|\)

\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2\)

\(\Leftrightarrow A^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(\Leftrightarrow A^2=4m^2+8m+4+4m^2-16m\)

\(\Leftrightarrow A^2=8m^2-8m+4\)

\(\Leftrightarrow A^2=8\left(m^2-m+\frac{1}{2}\right)\)

\(\Leftrightarrow A^2=8\left(m-\frac{1}{2}\right)^2+2\ge2\)

dấu "=" xảy ra \(\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)

vậy MIN A^2 = \(2\Leftrightarrow m=\frac{1}{2}\)

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
10 tháng 8 2018

dùng phương pháp Vi-ét ko hoàn toàn

(mình đăng lên youtube rồi đấy)

10 tháng 8 2018

xem rồi giùm mk nha