Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(B=1^2-2^2+3^2-4^2+...-2016^2+2017^2\)
\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)+2017^2\)
\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2015-2016\right)\left(2015+2016\right)+2017^2\)
\(=-1\cdot\left(1+2\right)+\left(-1\right)\cdot\left(3+4\right)+...+\left(-1\right)\cdot\left(2015+2016\right)+2017^2\)
\(=-1\cdot\left(1+2+...+2015+2016\right)+2017^2\)
\(=-1\cdot\dfrac{2016\cdot\left(2016+1\right)}{2}+2017^2\)
\(=-2033136+4068289=2035153\)
c)\(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=2^{64}-1-2^{64}=-1\)
\(a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x=36\)
\(\Rightarrow x=3\)
b) \(16x^2-\left(4x-5\right)^2=15\)
\(\Rightarrow16x^2-16x^2+40x-25=15\)
\(\Rightarrow x=1\)
d) \(\left(2x+5\right)\left(8x-7\right)-\left(-4x-3\right)^2=16\)
\(\Leftrightarrow16x^2-14x+40x-35-16x^2+24x-9=16\)
\(\Leftrightarrow50x=60\)
\(\Rightarrow x=\dfrac{6}{5}\)
e) \(49x^2+12x+1=0\)
\(\Leftrightarrow7x+1=0\)
\(\Rightarrow x=\dfrac{-1}{7}\)
f) \(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2-2x+1+y^2+4x+5=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
\(b,9x^2-4-\left(3x-2\right)\left(4x-5\right)=0\)
\(\Leftrightarrow9x^2-4-12x^2+23x-10=0\)
\(\Leftrightarrow-3x^2+23x-14=0\)
\(\Leftrightarrow-3x^2+21x+2x-14=0\)
\(\Leftrightarrow-3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,4x^2\left(x-1\right)-x+1=0\)
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x=-1\\x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\) \(d,x^2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-3\end{matrix}\right.\)
e thì k giúp j đc nhưng gửi lời khen đến anh ( chị ) chữ đẹp quá
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
B1:
ta có \(AC=\frac{2}{3}BD\Rightarrow\frac{1}{2}BD\times\frac{2}{3}BD=48\Leftrightarrow BD=12\left(cm\right)\Rightarrow AC=8\left(cm\right)\)
B2:
a) \(S=\frac{1}{2}\times10\times24=120\left(cm^2\right)\)
b) gọi a là cạnh hình thoi \(\Rightarrow a=\sqrt{\left(\frac{1}{2}\times10\right)^2+\left(\frac{1}{2}\times24\right)^2}=13\left(cm\right)\)
\(\Rightarrow C=4\times13=52\left(cm\right)\)
c) gọi h là đường cao \(\Rightarrow\frac{12}{13}=\frac{h}{10}\Leftrightarrow h=\frac{120}{13}\left(cm\right)\)
Hình bn tự vẽ nha
Theo bài ra , ta có :
Độ dài đường trung bình là :
\(\frac{6+1}{2}=3,5\left(cm\right)\)
Vì độ dài đtb = độ dài đ/cao
=) đ/cao = 3,5 (cm)
Diện tích hình thang đó là :
\(S=\left(\frac{\left(6+1\right).3,5}{2}\right)=12,25\left(cm^2\right)\)
Vậy \(S=\left(\frac{\left(6+1\right).3,5}{2}\right)=12,25\left(cm^2\right)\)
Chúc bạn học tốt =))
Phan Cả Phát xin hết !!!
Đường trung bình của hình thang bằng:
\(\frac{1+6}{2}=\frac{7}{2}=3,5\left(cm\right)\)
=> Chiều cao bằng 3,5 cm ( chiều cao= đường tb).
Diện tích hình thang bằng:
\(S_{hìnhthang}=\frac{\left(1+6\right).3,5}{2}=\frac{24,5}{2}=12,25\left(cm^2\right)\)