Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = \(\dfrac{27-12x}{x^2+9}\) = \(\dfrac{\left(4x^2+36\right)-\left(4x^2+12x+9\right)}{x^2+9}\)
= \(\dfrac{4\left(x^2+9\right)-\left(2x+3\right)^2}{x^2+9}\)
= \(4-\dfrac{\left(2x+3\right)^2}{x^2+9}\)
Vì \(\left(2x+3\right)^2\) \(\ge\) 0
\(x^2+9\) > 0
=> \(\dfrac{\left(2x+3\right)^2}{x^2+9}\) \(\ge\) 0
=> \(4-\dfrac{\left(2x+3\right)^2}{x^2+9}\) \(\le\) 4
Dấu bằng xảy ra <=> \(\left(2x+3\right)^2\) = 0
<=> 2x +3 = 0
<=> x = \(\dfrac{-3}{2}\)
Vậy GTLN của A = 4 khi x = \(\dfrac{-3}{2}\)
\(a,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x=36\)
\(\Rightarrow x=3\)
b) \(16x^2-\left(4x-5\right)^2=15\)
\(\Rightarrow16x^2-16x^2+40x-25=15\)
\(\Rightarrow x=1\)
d) \(\left(2x+5\right)\left(8x-7\right)-\left(-4x-3\right)^2=16\)
\(\Leftrightarrow16x^2-14x+40x-35-16x^2+24x-9=16\)
\(\Leftrightarrow50x=60\)
\(\Rightarrow x=\dfrac{6}{5}\)
e) \(49x^2+12x+1=0\)
\(\Leftrightarrow7x+1=0\)
\(\Rightarrow x=\dfrac{-1}{7}\)
f) \(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2-2x+1+y^2+4x+5=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
b)\(B=1^2-2^2+3^2-4^2+...-2016^2+2017^2\)
\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2015^2-2016^2\right)+2017^2\)
\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(2015-2016\right)\left(2015+2016\right)+2017^2\)
\(=-1\cdot\left(1+2\right)+\left(-1\right)\cdot\left(3+4\right)+...+\left(-1\right)\cdot\left(2015+2016\right)+2017^2\)
\(=-1\cdot\left(1+2+...+2015+2016\right)+2017^2\)
\(=-1\cdot\dfrac{2016\cdot\left(2016+1\right)}{2}+2017^2\)
\(=-2033136+4068289=2035153\)
c)\(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)
\(=2^{64}-1-2^{64}=-1\)
Câu 6: Tìm giá trị nhỏ nhất của biểu thức : \(A=x^2-2x+2\)
\(A=x^2-2x+2\)
\(A=\left(x^2-2.x.1+1^2\right)+2\)
\(A=\left(x-1\right)^2+2\)
Nhận xét : \(\left(x-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-1\right)^2+2\ge2\) với mọi x
\(\Rightarrow A\ge2\)
Vậy biểu thức A bằng 2 đạt được khi :
\(\left(x-1\right)^2=0\)
\(x-1=0\)
\(x=1\)
Bài1,
x là quãng đường AB(x>0,km)
khi đó thời gian người đó đi làx/40
và thời gian về của người đó là x/24
đổi 5h30phút =11/2h
theo bài ra ta có phương trình
x/30+x/24=11/2
MTC:120
Giải phương trìnhta được
x\(\approx\)73,33(TMĐK)
Vậy quãng đường AB dài 73,33km
2)1h30'=1,5h
gọi vận tốc xe đạp là x(km/h) (x>0)
vận tốc ô tô là 3x (km/h)
thời gian xe đạp đi từ A đến B là 24/x (h)
thời gian ô tô đi từ A đến B là 24/3x
vì ô tô đến trước xe đạp 1,5 h nên ta có phương trình
\(\dfrac{24}{3x}+1,5=\dfrac{24}{x}\\ \Leftrightarrow\dfrac{24}{3x}+1,5-\dfrac{24}{x}=0\\\Leftrightarrow\dfrac{24+1,5\cdot3x-24\cdot3}{3x} =0\\ \Leftrightarrow24+4,5x-72=0\\ \Leftrightarrow4,5x=72-24\Leftrightarrow4,5x=48\\ \Leftrightarrow x=\dfrac{48}{4,5}\approx10,7\left(\dfrac{km}{h}\right)\)
Vậy vận tốc của xe đạp là 10,7 (km/h)
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
\(b,9x^2-4-\left(3x-2\right)\left(4x-5\right)=0\)
\(\Leftrightarrow9x^2-4-12x^2+23x-10=0\)
\(\Leftrightarrow-3x^2+23x-14=0\)
\(\Leftrightarrow-3x^2+21x+2x-14=0\)
\(\Leftrightarrow-3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,4x^2\left(x-1\right)-x+1=0\)
\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=1\\2x=-1\\x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\) \(d,x^2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-3\end{matrix}\right.\)
bài 3 thì sao