K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Áp dụng định lý Bê-du về phép chia đa thức, dư khi chia $x^8$ cho $x+\frac{1}{2}$ là \((-\frac{1}{2})^8=\frac{1}{2^8}\)

Do đó: \(x^8=(x+\frac{1}{2})B(x)+\frac{1}{2^8}\)

\(\Rightarrow B(x)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=(x-\frac{1}{2})(x^2+\frac{1}{2^2})(x^4+\frac{1}{2^4})\)

Tiếp tục áp dụng định lý Bê-du, dư khi chia $B(x)$ cho $x+\frac{1}{2}$ là $B(-\frac{1}{2}$

Do đó:


\(r_2=B(\frac{-1}{2})=(\frac{-1}{2}-\frac{1}{2})[(-\frac{1}{2})^2+\frac{1}{2^2}][(-\frac{1}{2})^4+\frac{1}{2^4}]=-\frac{1}{16}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Áp dụng định lý Bê-du về phép chia đa thức, dư khi chia $x^8$ cho $x+\frac{1}{2}$ là \((-\frac{1}{2})^8=\frac{1}{2^8}\)

Do đó: \(x^8=(x+\frac{1}{2})B(x)+\frac{1}{2^8}\)

\(\Rightarrow B(x)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=(x-\frac{1}{2})(x^2+\frac{1}{2^2})(x^4+\frac{1}{2^4})\)

Tiếp tục áp dụng định lý Bê-du, dư khi chia $B(x)$ cho $x+\frac{1}{2}$ là $B(-\frac{1}{2}$

Do đó:


\(r_2=B(\frac{-1}{2})=(\frac{-1}{2}-\frac{1}{2})[(-\frac{1}{2})^2+\frac{1}{2^2}][(-\frac{1}{2})^4+\frac{1}{2^4}]=-\frac{1}{16}\)

NV
26 tháng 2 2019

\(x^8=\left(x+\dfrac{1}{2}\right)B\left(x\right)+r_1\)

Thay \(x=-\dfrac{1}{2}\Rightarrow r_1=\dfrac{1}{2^8}\Rightarrow x^8=\left(x+\dfrac{1}{2}\right)B\left(x\right)+\dfrac{1}{2^8}\)

\(\Rightarrow B\left(x\right)=\dfrac{x^8-\dfrac{1}{2^8}}{x+\dfrac{1}{2}}=\dfrac{\left(x^4+\dfrac{1}{2^4}\right)\left(x^2+\dfrac{1}{2^2}\right)\left(x+\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)}{x+\dfrac{1}{2}}\)

\(\Rightarrow B\left(x\right)=\left(x^4+\dfrac{1}{2^4}\right)\left(x^2+\dfrac{1}{2^2}\right)\left(x-\dfrac{1}{2}\right)\)

Lại có \(B\left(x\right)=\left(x+\dfrac{1}{2}\right).C\left(x\right)+r_2\)

\(\Rightarrow r_2=B\left(-\dfrac{1}{2}\right)=\left(\dfrac{1}{2^4}+\dfrac{1}{2^4}\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^2}\right)\left(-\dfrac{1}{2}-\dfrac{1}{2}\right)=\dfrac{-1}{2^4}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Đặt \(f(x)=x^2+mx+2\)

Theo định lý Bê-du về phép chia đa thức thì đa thức dư khi chia $f(x)$ cho $x-1$ và $x+1$ lần lượt là $f(1)$ và $f(-1)$

\(\Rightarrow \left\{\begin{matrix} R_1=f(1)=1+m+2=m+3\\ R_2=f(-1)=1-m+2=3-m\end{matrix}\right.\)

Vì $R_1=R_2$

\(\Leftrightarrow m+3=3-m\Rightarrow m=0\)

23 tháng 11 2019

a) =\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+\frac{25}{4}x^2-\frac{9}{4}x^2\)

  \(=\left(x^2-x+1-\frac{5}{2}x\right)^2-\frac{9}{4}x^2\)

\(=\left(x^2+1-2x\right)\left(x^2+1-5\right)\)

5 tháng 4 2022

-5x kìa

 

19 tháng 3 2017

jahBJF=86245HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

19 tháng 3 2017

Bài 4: 

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\left(1\right)\)

Áp dụng BĐT AM-GM ta có: 

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\left(2\right)\)

Lại có: \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge2xy\)

Đẳng thức xảy ra khi \(x=y\)

Câu 1:Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)a) Rút gọn P.b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.Câu 2: 1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3a) Chứng minh rằng: x1 + x2+ x3=0; x1x2 + x2x3 + x3x1 = -3 và x1x2x3=1b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?2. Giải phương...
Đọc tiếp

Câu 1:

Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)

a) Rút gọn P.

b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.

Câu 2: 

1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3

a) Chứng minh rằng: x+ x2+ x3=0; x1x+ x2x3 + x3x1 = -3 và x1x2x3=1

b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?

2. Giải phương trình: \(\left(x^2-3x+2\right)\left(x^2+9x+20\right)=112\)

Bài 3: Cho tam giác ABC và điểm M di động trên đoạn BC. Gọi I là điểm bất kì trên đoạn AM và E là giao điểm của BI với cạnh AC.

a) Khi M và I thỏa mãn MC=2MB và AI=2IM. Tính tỉ số độ dài 2 đoạn AE và EC.

b) Khi M là trung điểm của BC, gọi F là giao điểm của CI với cạnh AB. Chứng minh rằng EF // BC ? 

0
1 tháng 11 2020