Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba anh ấy đẹp trai quá!!!!!!!! Love love <3!!!!!!!!
Ta có:
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...\frac{1}{50.51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}\)
Vì \(\frac{1}{2}-\frac{1}{51}<1\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<1\)
\(y<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)
\(y<1-\frac{49}{50}<1\)
=> y < 1
\(BD^2-CD^2=BI^2-ID^2-\left(CI^2-ID^2\right)=BI^2-CI^2\)
\(=BI^2-AI^2=AB^2\)(đpcm)
\(\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}=8-x^2\) (\(x^2\ge4\))
<=>\(\sqrt{x^2+4\sqrt{x^2-4}}=16-2x^2\)
<=>\(\sqrt{x^2-4+4\sqrt{x^2-4}+4}=16-2x^2\)
<=>\(\sqrt{\left(\sqrt{x^2-4}+2\right)^2}=16-2x^2\)
<=>\(\sqrt{x^2-4}+2=16-2x^2\)
<=>\(\sqrt{x^2-4}+2=-2.\left(x^2-4\right)+8\)
Đặt t=\(\sqrt{x^2-4}\) (t\(\ge\)0) ta được:
t+2=-2t2+8
<=>2t2+t-6=0
\(\Delta=49\Rightarrow\sqrt{\Delta}=7;\Delta>0,\text{pt có 2 nghiệm phân biệt: }t_1=\frac{3}{2}\left(thỏa\right);t_2=-2\left(loại\right)\)
*t=3/2 =>\(\sqrt{x^2-4}=\frac{3}{2}\Leftrightarrow x^2-4=\frac{9}{4}\Leftrightarrow x^2=\frac{25}{4}\Leftrightarrow x=\pm\frac{5}{2}\left(thỏa\right)\)
Vậy S={\(\pm\frac{5}{2}\)}
\(\begin{cases}2\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{xy}\\x+y=5\end{cases}\)(1) (x,y\(\ge\)0)
<=>\(\begin{cases}2\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{xy}\\\left(\sqrt{x}+\sqrt{y}\right)^2-2\sqrt{xy}=5\end{cases}\)
Đặt S=\(\sqrt{x}+\sqrt{y}\);P=\(\sqrt{xy}\)(\(S,P\ge0;S^2\ge4P\)) ta được:
\(\begin{cases}2S=3P\\S^2-2P=5\end{cases}\)<=>\(\begin{cases}P=\frac{2}{3}S\\S^2-\frac{4}{3}S-5=0\end{cases}\)
*\(S^2-\frac{4}{3}S-5=0\)
\(\Delta=\frac{196}{9}\Rightarrow\sqrt{\Delta}=\frac{14}{3};\Delta>0,pt\text{ có 2 nghiệm phân biệt: }S_1=3\left(thỏa\right);S_2=-\frac{5}{3}\left(loại\right)\)
=>P=2 (thỏa)
Các giá trị \(\sqrt{x};\sqrt{y}\) là nghiệm của PT: a2-3a+2
\(\Delta=1\Rightarrow\sqrt{\Delta}=1;\Delta>0,pt\text{ có 2 nghiệm phân biệt: }a_1=2;a_2=1\)
Với \(\sqrt{x}=2;\sqrt{y}=1\Leftrightarrow x=4;y=1\)
Với \(\sqrt{x}=1;\sqrt{y}=2\Leftrightarrow x=1;y=4\)
Vậy HPT có 2 nghiệm: (4;1);(1;4)
Hơi khó đọc
truyện hay bạn nhỉ