Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu :
Cho đường tròn (C) có phương trình: x2 + y2 - 4x + 8y - 5 = 0
Giải :
a) Tâm I(2 ; -4), R = 5
b) Đường tròn có phương trình: (x - 2 )2 + (y + 4)2 = 25
Thế tọa độ A(-1 ; 0) vào vế trái, ta có :
(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25
Vậy A(-1 ;0) là điểm thuộc đường tròn.
Áp dụng công thức tiếp tuyến (Xem sgk)
Ta được pt tiếp tuyến với đường tròn tai A là:
(-1 - 2)(x - 2) + (0 + 4)(y + 4) = 25 <=> 3x - 4y + 3 = 0
a) Tâm I(2 ; -4), R = 5
b) Đường tròn có phương trình: (x – 2 )2 + (y + 4)2 = 25
Thế tọa độ A(-1 ; 0) vào vế trái, ta có :
(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25
Vậy A(-1 ;0) là điểm thuộc đường tròn.
Áp dụng công thức tiếp tuyến (Xem sgk)
Ta được pt tiếp tuyến với đường tròn tai A là:
(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25 <=> 3x – 4y + 3 = 0
Chú ý:
1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:
Vectơ = (-3; 4)
Tiếp tuyến đi qua A(-1; 0) và nhận làm một vectơ pháp tuyến có phương trình:
-3(x + 1) + 4(y – 0) = 0 ,<=> 3x – 4y + 3 = 0
a) x2 + y2 – 4x + 8y – 5 = 0
⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25
⇔ (x – 2)2 + (y + 4)2 = 25.
Vậy (C) có tâm I(2 ; –4), bán kính R = 5.
b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:
(–1 – 2)2 + (0 + 4)2 = 32 + 42 = 52= R2
⇒ A thuộc đường tròn (C)
⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A
⇒ (d’) là đường thẳng đi qua A và vuông góc với IA
⇒ (d’) nhận là một vtpt và đi qua A(–1; 0)
⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.
c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).
(d) có là một vtpt; 1 VTCP là ud→(4; 3)
(Δ) ⊥ (d) ⇒ (Δ) nhận là một vtpt
⇒ (Δ): 4x + 3y + c = 0.
(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R
Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.
M N d d d1 d2 I
a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)
Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:
\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)
<=> 16y2-24y+9+9y2-9+12y-63y=0
<=>25y2-75y=0
<=> y=0=>x=1
hoặc y=3=>x=-3
Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)
b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)
=>tọa độ tâm I(0,5;3,5)
Gọi d1,d2 là các tiếp tuyến tại M và N
VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1
=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)
hay d1: x-7y-1=0
Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:
d2:7x+y+18=0
c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
=>tọa độ giao điểm là (-2,5;-0,5)
a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:
$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$
Với I là tâm đường tròn, A là điểm trên đường tròn.
Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$
Thay vào công thức ta được:
$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$
Vậy bán kính của đường tròn là $\sqrt{34}$.
Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:
$(x-2)^2 + (y-3)^2 = 34$
b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.
Ta có phương trình đường tròn chính giữa:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Tại điểm M(x,y) trên đường tròn, ta có:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:
$y - y_M = y'(x-x_M)$
Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:
$y + 5 = \frac{-(x-1)}{y+5}(x-1)$
Simplifying:
$x(y+5) + y(x-1) = 6$
Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến
a: (C): x^2-4x+4+y^2+6y+9=25
=>(x-2)^2+(y+3)^2=25
=>R=5; I(2;-3)
\(IM=\sqrt{\left(5-2\right)^2+\left(1+3\right)^2}=5\)
=>M thuộc (C)
vecto IM=(3;4)
Phương trình tiếp tuyến tại M là:
3(x-2)+4(y+3)=0
=>3x-6+4y+12=0
=>3x+4y+6=0
b: (d)//-3x+4y+3=0
=>(d): -3x+4y+c=0; I(2;-3)
d(I;(d))=5
=>\(\dfrac{\left|2\cdot\left(-3\right)+4\cdot\left(-3\right)+c\right|}{\sqrt{\left(-3\right)^2+4^2}}=5\)
=>|c-18|=25
=>c=43 hoặc c=-7
c: (d) vuông góc (-3x+4y+3)=0
=>(d): 4x+3y+c=0
I(2;-3)
\(d\left(I;\left(d\right)\right)=5\)
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot3+c\right|}{5}=5\)
=>|c-1|=25
=>c=26 hoặc c=-24
1.
Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi
Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)
\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:
\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)
\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)
Đường tròn (C) tâm \(I\left(2;4\right)\) bán kính \(R=5\)
Điểm A thuộc (C) nên tiếp tuyến d qua A vuông góc IA
\(\Rightarrow\overrightarrow{AI}=\left(3;4\right)\Rightarrow\) đường thẳng d nhận (3;4) là 1 vtpt
Phương trình d:
\(3\left(x+1\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+3=0\)