K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016
  • \(Q=x^2+2y^2-3x-4y+10\)

\(=\left(x^2-3x+\frac{9}{4}\right)+2\left(y^2-2y+1\right)+10-\frac{9}{4}-2\)

\(=\left(x-\frac{3}{2}\right)^2+2\left(y-1\right)^2+\frac{23}{4}\ge\frac{23}{4}\)

Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\y=1\end{cases}\)

Vậy Min Q = \(\frac{23}{4}\) tại (x;y) = (\(\frac{3}{2};1\))

  • E đề ghi không rõ ...
13 tháng 8 2016

Mình Ghi lại câu E nhé

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

3 tháng 12 2017

- Viết 7 hằng đẳng thức đáng nhớ :

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A-B\right)^2=A^2-2AB+B^2\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)

\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)

- Áp dụng :

\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(b,\left(\dfrac{5x-1}{2}\right)^2=\dfrac{\left(5x-1\right)^2}{2^2}=\dfrac{25x^2-10x+1}{4}\)

\(c,\left(\dfrac{1}{3x-3}\right)\left(\dfrac{1}{3x+3}\right)=\dfrac{1.1}{\left(3x-3\right)\left(3x+3\right)}=\dfrac{1}{9x^2-9}\)

\(d,\left(2x+3\right)^3=8x^3+36x^2+54x+27\)

\(e,\left(\dfrac{1}{4y-2x}\right)^2=\dfrac{1}{\left(4y-2x\right)^2}=\dfrac{1}{16y^2-16xy+4x^2}\)

\(f,\left(2x-y\right)\left(4x^2+2xy+y^2\right)=\left(2x\right)^3-y^3=8x^3-y^3\)

\(g,\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

3 tháng 9 2016

1 ) Thực hiện phép tính :

a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)

\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)

\(=-5xyz^2+6x^2yz^2\)

b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2x-2-x^3\)

c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)

\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)

\(=x^4-2x^3-37x^2+15x-7\)

d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)

\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)

\(=2x^3-x^2y-2xy^2+y^3\)

e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)

( để xem lại )

2 Tìm x 

a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)

\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)

\(\Leftrightarrow21x=7\)

\(\Leftrightarrow x=3\)

b ) Sai đề 

c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)

( Để xem lại )

5 tháng 9 2016

mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề

17 tháng 6 2017

b1:

câu a,f áp dụng a2-b2=(a-b)(a+b)

câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)

câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)

câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)

câu g xem lại đề

17 tháng 6 2017

b2:

\(f\left(x;y\right)=x^2+y^2-6x+5y+9=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu "=" xảy ra khi x=3 và y=-5/2

câu c làm tương tự

30 tháng 7 2016

D= 5x^2+8xy+5y^2-2x+2y  

=4x^2+8xy+4y^2-2x+2y+y^2+x^2

=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2

(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2

suy ra D>=-1/2 nên D có GTNN là -1/2

30 tháng 7 2016

Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y

5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1  

5D = ( 5x + 4y - 1)2 + 9 (y + 1)- 2

D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1) -  \(\frac{2}{5}\)  \(\ge\)\(\frac{-2}{5}\)

Dấu "=" xảy ra khi y+1 = 0  \(\Leftrightarrow\)y = -1

                          5x + 4y - 1 = 0  \(\Leftrightarrow\)x=1

Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1