Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ:
\(\Leftrightarrow x^2+2x.\frac{x}{x-1}+\left(\frac{x}{x-1}\right)^2-\frac{2x^2}{x-1}=3\)
\(\Leftrightarrow\left(x+\frac{x}{x-1}\right)^2-\frac{2x^2}{x-1}-3=0\)
\(\Leftrightarrow\left(\frac{x^2}{x-1}\right)^2-\frac{2x^2}{x-1}-3=0\)
Đặt \(\frac{x^2}{x-1}=a\)
\(\Rightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x-1}=-1\\\frac{x^2}{x-1}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-3x+3=0\end{matrix}\right.\)
2/ Pt dưới tương đương:
\(\left(2x+y\right)^2-2\left(2x+1\right)+1=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2=0\)
\(\Leftrightarrow2x+y-1=0\Rightarrow y=1-2x\)
Thay vào pt trên:
\(x^2+x\left(1-2x\right)+2=0\)
\(\Leftrightarrow-x^2+x+2=0\)
3/ Chắc là \(P=4x^2+9y^2\)
\(15^2=\left(2.2x+3y\right)^2\le\left(2^2+1^2\right)\left(4x^2+9y^2\right)\)
\(\Rightarrow4x^2+9y^2\ge\frac{15^2}{5}=45\)
\(P_{min}=45\) khi \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
\(a,x-3\sqrt{x}+2\)
\(=x-3\sqrt{x}+\frac{9}{4}-\frac{1}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=\left(x+2\right)\left(x-2\right)\)
câu a mình nhìn nhầm :
\(=\left(x-1\right)\left(x+2\right)\)
1. Ta có:
\(\Leftrightarrow \left\{\begin{matrix} x+y+3xy=21\\ x^2+y^2-xy=-15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y+3xy=21\\ (x+y)^2-3xy=-15\end{matrix}\right.\)
Đặt $x+y=a; xy=b$ thì HPT trở thành:\( \left\{\begin{matrix} a+3b=21\\ a^2-3b=-15\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3b=21-a\\ a^2-3b+15=0\end{matrix}\right.\)
\(\Rightarrow a^2-(21-a)+15=0\Leftrightarrow a^2+a-6=0\)
\(\Leftrightarrow (a-2)(a+3)=0\Rightarrow a=2\) hoặc $a=-3$
Nếu $a=2$ thì $b=\frac{19}{3}$. Như vậy $x+y=2; xy=\frac{19}{3}$
Áp dụng định lý Viet đảo suy ra $x,y$ là nghiệm của PT $X^2-2X+\frac{19}{3}=0$ (pt vô nghiệm)
Nếu $a=-3$ thì $b=8$. Áp dụng định lý Viet đảo thì $x,y$ là nghiệm của PT $X^2+3X+8=0$ (pt vô nghiệm)
Tóm lại HPT vô nghiệm.
2.
HPT \(\Leftrightarrow \left\{\begin{matrix} (x+xy+y)^3-3(x+xy)(x+y)(xy+y)=17\\ x+xy+y=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 5^3-3(x+xy)(x+y)(xy+y)=17\\ (x+1)(y+1)=6\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (x+xy)(x+y)(xy+y)=36\\ (x+1)(y+1)=6\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} xy(x+y)(x+1)(y+1)=36\\ (x+1)(y+1)=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy(x+y)=6\\ x+y+xy=5\end{matrix}\right.\)
Theo định lý Viet đảo thì $xy,x+y$ là nghiệm của PT:
$X^2-5X+6=0$
$\Rightarrow (xy,x+y)=(3,2); (2,3)$
Nếu $(xy,x+y)=(3,2)$ thì theo Viet đảo thì $x,y$ là nghiệm của PT $K^2-2K+3=0$ (vô nghiệm)
Nếu $(xy,x+y)=(2,3)$ thì theo Viet đảo thì $x,y$ là nghiệm của PT $K^2-3K+2=0$
$\Rightarrow (x,y)=(1,2); (2,1)$
=>2x+6=3y+3+1 và 3x-3y+1=2x-4+3
=>2x-3y=-2 và x-3y=-2
=>x=0 và y=2/3