Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1- \(sin^2\alpha\)= \(cos^2\alpha\)
b) (\(1-cos\alpha\))(\(1+cos\alpha\)) = 1 - cos2\(\alpha\) = sin2\(\alpha\)
c) 1 + cos2\(\alpha\) + sin2\(\alpha\) = \(1+1=2\)
d) sin\(\alpha\) - sin\(\alpha.cos^2\alpha\)
= \(sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)
= \(\left(sin^2\alpha\right)^2+2sin^2\alpha.cos^2\alpha+\left(cos^2\alpha\right)^2\)
= \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)
f) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)
= \(tan^2\alpha\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)
g) \(cos^2\alpha+tan^2\alpha.cos^2\alpha\)
= \(cos^2\alpha\left(1+tan^2\alpha\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\)
h) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)
= \(tan^2\alpha\left[cos^2\alpha+\left(cos^2\alpha+sin^2\alpha\right)-1\right]\)
= \(tan^2\alpha\left(cos^2\alpha+1-1\right)\)
= \(tan^2\alpha.cos^2\alpha=sin^2\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)
\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)
\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)
\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)
\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)
\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)
rút gọn biểu thức
a. 1 - sin2 2
b. (1+cos2) (1 - cos2)
c. sin4 2 + cos4 2 + 2sin2 2 cos2 2
giúp mình với
a.\(1-\sin^2\alpha=\cos^2\alpha\)
b.\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
c.\(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\sin^2\alpha\)
d.\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
e.\(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha=\tan^2\alpha\left(1-\sin^2\alpha\right)=\tan^2\alpha.\cos^2\alpha=\sin^2\alpha\)
g.\(\cos^2\alpha+\cos^2\alpha.\tan^2\alpha=\cos^2\alpha\left(1+\tan^2\alpha\right)=\cos^2\alpha.\frac{1}{\cos^2\alpha}=1\)
... \(=\left(sin^2a\right)^2+2\cdot sin^2a\cdot cos^2+\left(cos^2a\right)^2=\left(sin^2a+cos^2a\right)^2=1^2=1\)
\(sin^4a+cos^4a+2sin^2a\cdot cos^2a\)
\(=1-2sin^2a\cdot cos^2a+2sin^2a\cdot cos^2a\)
\(=1\)