Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1- \(sin^2\alpha\)= \(cos^2\alpha\)
b) (\(1-cos\alpha\))(\(1+cos\alpha\)) = 1 - cos2\(\alpha\) = sin2\(\alpha\)
c) 1 + cos2\(\alpha\) + sin2\(\alpha\) = \(1+1=2\)
d) sin\(\alpha\) - sin\(\alpha.cos^2\alpha\)
= \(sin\alpha\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)
e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)
= \(\left(sin^2\alpha\right)^2+2sin^2\alpha.cos^2\alpha+\left(cos^2\alpha\right)^2\)
= \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\)
f) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)
= \(tan^2\alpha\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)
g) \(cos^2\alpha+tan^2\alpha.cos^2\alpha\)
= \(cos^2\alpha\left(1+tan^2\alpha\right)=cos^2\alpha.\dfrac{1}{cos^2\alpha}=1\)
h) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)
= \(tan^2\alpha\left[cos^2\alpha+\left(cos^2\alpha+sin^2\alpha\right)-1\right]\)
= \(tan^2\alpha\left(cos^2\alpha+1-1\right)\)
= \(tan^2\alpha.cos^2\alpha=sin^2\alpha\)
a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)
b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)
\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)
\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)
c)
\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)
\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)
a) ta có : \(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow A=sin^2\alpha+2sin\alpha.cos\alpha+cos^2\alpha+sin^2\alpha-2sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow A=2\left(sin^2\alpha+cos^2\alpha\right)=2.1=2\) (không phụ thuộc vào \(\alpha\))
\(\Rightarrow\left(đpcm\right)\)
\(B=sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha\left(sin^2\alpha+cos^2\alpha\right)+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3-3sin^2\alpha.cos^2\alpha+3sin^2\alpha.cos^2\alpha\)
\(\Leftrightarrow B=\left(sin^2\alpha+cos^2\alpha\right)^3=1^3=1\) (không phụ thuộc vào \(\alpha\) ) \(\Rightarrow\left(đpcm\right)\)
a/A = sin2 + 2. sin.cos + cos2 + sin2 -2cos.sin + cos2= 2
Tớ không biết ghi anpha nên ..
\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)
\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)
\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)
\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)
Câu cuối đề bài sai
\(A=\frac{1-2sina.cosa}{sin^2a-cos^2a}=\frac{sin^2a+cos^2a-2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina-cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina-cosa}{sina+cosa}\)
b/ \(A=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{\frac{1}{3}-1}{\frac{1}{3}+1}=-\frac{1}{2}\)
\(\cos^4\alpha+\cos^2\alpha.\sin^2\alpha+\sin^2\alpha\)
\(=\cos^2\alpha.\cos^2\alpha+\cos^2\alpha.\sin^2\alpha+\sin^2\alpha\)
\(=\cos^2\alpha\left(\cos^2\alpha+\sin^2\alpha\right)+\sin^2\alpha\)
\(=\cos^2\alpha.1+\sin^2\alpha\)
\(=\cos^2\alpha+\sin^2\alpha=1\)
Lời giải:
Ta có:
\(A=4\sin ^4a\cos ^2a+(\sin ^2a-\cos ^2a)^2+4\cos ^4a\sin ^2a\)
\(=4\sin ^2a\cos ^2a(\sin ^2a+\cos ^2a)+(\sin ^2a-\cos ^2a)^2\)
\(=4\sin ^2a\cos ^2a+(\sin ^2a-\cos ^2a)^2\)
\(=4\sin ^2a\cos ^2a+\sin ^4a+\cos ^4a-2\sin ^2a\cos ^2a\)
\(=2\sin ^2a\cos ^2a+\sin ^4a+\cos ^4a=(\sin ^2a+\cos ^2a)^2\)
\(=1^2=1\)
Vậy biểu thức có giá trị không phụ thuộc vào $a$
a.\(1-\sin^2\alpha=\cos^2\alpha\)
b.\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
c.\(\left(1-\cos\alpha\right)\left(1+\cos\alpha\right)=1-\cos^2\alpha=\sin^2\alpha\)
d.\(1+\sin^2\alpha+\cos^2\alpha=1+1=2\)
e.\(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha=\tan^2\alpha\left(1-\sin^2\alpha\right)=\tan^2\alpha.\cos^2\alpha=\sin^2\alpha\)
g.\(\cos^2\alpha+\cos^2\alpha.\tan^2\alpha=\cos^2\alpha\left(1+\tan^2\alpha\right)=\cos^2\alpha.\frac{1}{\cos^2\alpha}=1\)