\(x^3+4x^2-29x+24\)

b/ \(a^4+a^2+1\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

\(\text{bn vào câu hỏi khác của mik nhé!!!}\)

\(\text{Có mấy câu giống}\)

`~~~~~~~~~~~~~~~~~

`~~~~~~~~~~~~~~~~~

olm-logo.png

18 tháng 9 2018

\(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4+1\right)^2-x^4\)

\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)

\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

31 tháng 1 2018

a)   \(x^5-2x^4+3x^3-4x^2+2\)

\(=x^5-x^4-x^4+x^3+2x^3-2x^2-2x^2+2\)

\(=x^4\left(x-1\right)-x^3\left(x-1\right)+2x^2\left(x-1\right)-2\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^4-x^3+2x^2-2x-2\right)\)

b)    \(x^4+1997x^2+1996x+1997\)

\(=\left(x^4+x^2+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)+1996\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)

c)   \(x^8+x^4+1\)

\(=x^8+2x^4+1-x^4\)

\(=\left(x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)

c)   \(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

9 tháng 8 2018

mk ghi đáp án, còn lại bạn tự biến đổi

a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)

b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)

9 tháng 8 2018

mk làm chi tiết theo yêu của của người hỏi đề:

a) \(2x^3-x^2+5x+3\)

\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)

\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

b)  \(x^3+5x^2+8x+4\)

\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)

\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x^2+4x+4\right)\)

\(=\left(x+1\right)\left(x+2\right)^2\)

10 tháng 7 2017

a) = \(4x^4+4x^2+1\)

= \(\left(2x^2+1\right)^2\)

b) = \(4x^4+36x^2+81-36x^2\)

= \(\left(2x^2+9\right)^2\)

c) = \(64x^4+16x^2y^2+y^4-16x^2y^2\)

= \(\left(8x^2+y^2\right)^2\)

d) = \(x^8+4x^4+4-4x^4\)

= \(\left(x^4+2\right)^2\)

e) = \(\left(x^4+2x^2+1\right)-x^2\)

= \(\left(x^2+1\right)^2-x^2\)

= \(\left(x^2+1-x\right).\left(x^2+1+x\right)\)

f) = \(\left(x^7-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)\)

= \(x.\left(x^3-1\right).\left(x^3+1\right)+x^2.\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(\left(x^2+x+1\right).\left(x-1\right).\left(x^4+x\right)+x^2.\left(x-1\right).\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right).\left(x^5-x^4+x^3-1+1\right)\)

6 tháng 9 2017

c/=64x^4+16x^2y^2+y^4-16x^2y^2

=(8x^2+y^2)^2-(4xy)^2

=(8x^2+y^2+4xy)(8x^2+y^2-4xy)

14 tháng 7 2017

giải

a)4x^2-20x-(4x^2+3x-4x-3)=5

4x^2-20x-4x^2-3x+4x+3=5

-19x+3=5

-19x=5-3

-189x=2

x=-2/19

mik giải luôn đó chứ ko viết đầu bài đâu

14 tháng 7 2017

c)

2x(x-3)-2(x^2-4)=4

2x^2-6x-2x^2+8=4

-6x+8=44

-6x=4-8

-6x=-4

x=2/3

7 tháng 10 2018

a)\(a^4+a^2+1=\left(a^2\right)^2+2a^2.1+1^2-a^2=\left(a^2+1\right)^2-a^2=\left(a^2+1+a\right)\left(a^2+1-a\right)\)

b)\(a^4+a^2-2=a^4-a^2+2a^2-2=a^2\left(a^2-1\right)+2\left(a^2-1\right)=\left(a^2+2\right)\left(a^2-1\right)\)

c)\(x^4+4x^2-5=x^4-x^2+5x^2-5=x^2\left(x^2-1\right)+5\left(x^2-1\right)=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)

d)\(\left(x+2\right)\left(x^2-2x-6\right)=x^3-2x^2-6x+2x^2-4x-12=x^3-10x-12\)

\(\Rightarrow x^3-10x-12=\left(x+2\right)\left(x^2-2x-6\right)\)

e)\(6x^3-17x^2+14x-3\)

Ta có: \(\left(ax^2+bx+c\right)\left(dx+e\right)\)

\(=adx^3+aex^2+bdx^2+bex+cdx+ce\)

\(=adx^3+\left(ae+bd\right)x^2+\left(be+cd\right)x+ce\)

Do đó:\(\left\{{}\begin{matrix}ad=6\\ae+bd=-17\\be+cd=14\\ce=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3;b=-4\\c=1;d=2\\e=-3\end{matrix}\right.\)

Suy ra: \(6x^3-17x^2+14x-3=\left(3x^2-4x+1\right)\left(2x-3\right)\)

7 tháng 10 2018

h)\(x^4-34x^2+225=x^4-15x^2-15x^2+225-4x^2=x^2\left(x^2-15\right)-15\left(x^2-15\right)-\left(2x\right)^2=\left(x^2-15\right)^2-\left(2x\right)^2=\left(x^2+2x-15\right)\left(x^2-2x-15\right)=\left(x^2-3x+5x-15\right)\left(x^2+5x-3x-15\right)=\left[\left(x-3\right)\left(x+5\right)\right]^2\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

1)

\(15x^3+29x^2-8x-12=(15x^3+30x^2)-(x^2+2x)-(6x+12)\)

\(=15x^2(x+2)-x(x+2)-6(x+2)\)

\(=(x+2)(15x^2-x-6)=(x+2)(15x^2-10x+9x-6)\)

\(=(x+2)[5x(3x-2)+3(3x-2)]\)

\(=(x+2)(3x-2)(5x+3)\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

2)

\(x^3+4x^2-29x+24=(x^3-x^2)+(5x^2-5x)-(24x-24)\)

\(=x^2(x-1)+5x(x-1)-24(x-1)\)

\(=(x-1)(x^2+5x-24)\)

\(=(x-1)(x^2-3x+8x-24)\)

\(=(x-1)[x(x-3)+8(x-3)]=(x-1)(x-3)(x+8)\)