Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
\(a)\) \(xy-y\sqrt{x}+\sqrt{x}-1\)
= \(y\sqrt{x}.(\sqrt{x}-1)+\sqrt{x}-1\)
=\((\sqrt{x}-1).(y\sqrt{x}+1)\).
\(b)\)\(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
=\(\sqrt{a}.\sqrt{x}-\sqrt{b}.\sqrt{y}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}\)
=\(\sqrt{a}.\sqrt{x}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}-\sqrt{b}.\sqrt{y}\)
=\(\sqrt{x}.(\sqrt{a}+\sqrt{b})-\sqrt{y}.(\sqrt{a}+\sqrt{b})\)
=\((\sqrt{x}-\sqrt{y}).(\sqrt{a}+\sqrt{b})\).
\(c)\)\(\sqrt{a+b}+\sqrt{a^2-b^2}\)
=\(\sqrt{a+b}+\sqrt{(a+b).(a-b)}\)
=\(\sqrt{a+b}+\sqrt{a+b}.\sqrt{a-b}\)
=\(\sqrt{a+b}.\left(1+\sqrt{a-b}\right)\).
\(d)\) \(12-\sqrt{x}-x\)
=\(12-4\sqrt{x}+3\sqrt{x}-x\)
=\(4.\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)\)
=\(\left(3-\sqrt{x}\right).\left(4+\sqrt{3}\right)\).
\(a,=\sqrt{xy}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{xy}+1\right)\left(\sqrt{x}-1\right)\\ b,=\sqrt{xy}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)=\left(\sqrt{x}+1\right)\left(\sqrt{xy}+1\right)\)
\(\text{a) }\sqrt{a^3+b^3}+\sqrt{a^2-b^2}=\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}+\sqrt{\left(a+b\right)\left(a-b\right)}\)
\(=\sqrt{a+b}\left(\sqrt{a^2-ab+b^2}+\sqrt{a-b}\right)\)
\(\text{b) }\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{xy}\text{ không phân tích được.}\)
\(\text{c) }=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\left(\sqrt{x}-\sqrt{y}\right).\sqrt{xy}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+2\sqrt{xy}\right)\)\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(\text{d) }a+5\sqrt{a}+4=\sqrt{a}.\sqrt{a}+\sqrt{a}+4\sqrt{a}+4=\sqrt{a}\left(\sqrt{a}+1\right)+4\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+4\right)\)
\(x\sqrt{x}+x-y+y\sqrt{x}-xy\sqrt{x}-xy\sqrt{y}=\left(x\sqrt{y}+y\sqrt{x}\right)+\left(x-y\right)-\left(xy\sqrt{x}+xy\sqrt{y}\right)\)
\(=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy\right)\)
a> = \(y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)=\left(\sqrt{x}-1\right)\left(y\sqrt{x}-1\right)\)
a) \(xy-y\sqrt{x}+\sqrt{x}-1\)
\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)
\(=\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)
b) \(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)
\(=\left(\sqrt{ax}-\sqrt{ay}\right)+\left(-\sqrt{by}+\sqrt{bx}\right)\)
\(=\sqrt{a}.\left(\sqrt{x}-\sqrt{y}\right)+\sqrt{b}.\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{a}+\sqrt{b}\right)\)