\(xy+y\sqrt{xy}+\sqrt{x}\sqrt{y}\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A,ĐKXĐ:x;y\ge0\)

\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)

\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)

\(ĐKXĐ:x;y\ge0\)

\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)

\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)

28 tháng 7 2016

re nhung rai qua di

22 tháng 6 2019

\(ab+b\sqrt{a}+\sqrt{a}+1\)

(đk: \(a\ge0\))

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

22 tháng 6 2019

ĐK: \(x,y\ge0\)

\(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\left(\sqrt{x}+\sqrt{y}\right)-y\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}-\sqrt{y}\right)\)

4 tháng 10 2020

a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)

\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)

4 tháng 10 2020

b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)

\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)

11 tháng 10 2020

a= 98 b=35 c=122 và d=129

11 tháng 10 2020

a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)

b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)

c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)

d, \(x-y-\sqrt{x}-\sqrt{y}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)

5 tháng 7 2015

\(\text{a) }\sqrt{a^3+b^3}+\sqrt{a^2-b^2}=\sqrt{\left(a+b\right)\left(a^2-ab+b^2\right)}+\sqrt{\left(a+b\right)\left(a-b\right)}\)

\(=\sqrt{a+b}\left(\sqrt{a^2-ab+b^2}+\sqrt{a-b}\right)\)

\(\text{b) }\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{xy}\text{ không phân tích được.}\)

\(\text{c) }=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\left(\sqrt{x}-\sqrt{y}\right).\sqrt{xy}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+2\sqrt{xy}\right)\)\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\text{d) }a+5\sqrt{a}+4=\sqrt{a}.\sqrt{a}+\sqrt{a}+4\sqrt{a}+4=\sqrt{a}\left(\sqrt{a}+1\right)+4\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+4\right)\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

20 tháng 7 2017

\(a)\) \(xy-y\sqrt{x}+\sqrt{x}-1\)

= \(y\sqrt{x}.(\sqrt{x}-1)+\sqrt{x}-1\)

=\((\sqrt{x}-1).(y\sqrt{x}+1)\).

\(b)\)\(\sqrt{ax}-\sqrt{by}+\sqrt{bx}-\sqrt{ay}\)

=\(\sqrt{a}.\sqrt{x}-\sqrt{b}.\sqrt{y}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}\)

=\(\sqrt{a}.\sqrt{x}+\sqrt{b}.\sqrt{x}-\sqrt{a}.\sqrt{y}-\sqrt{b}.\sqrt{y}\)

=\(\sqrt{x}.(\sqrt{a}+\sqrt{b})-\sqrt{y}.(\sqrt{a}+\sqrt{b})\)

=\((\sqrt{x}-\sqrt{y}).(\sqrt{a}+\sqrt{b})\).

\(c)\)\(\sqrt{a+b}+\sqrt{a^2-b^2}\)

=\(\sqrt{a+b}+\sqrt{(a+b).(a-b)}\)

=\(\sqrt{a+b}+\sqrt{a+b}.\sqrt{a-b}\)

=\(\sqrt{a+b}.\left(1+\sqrt{a-b}\right)\).

\(d)\) \(12-\sqrt{x}-x\)

=\(12-4\sqrt{x}+3\sqrt{x}-x\)

=\(4.\left(3-\sqrt{x}\right)+\sqrt{x}\left(3-\sqrt{x}\right)\)

=\(\left(3-\sqrt{x}\right).\left(4+\sqrt{3}\right)\).

25 tháng 6 2019

3. :))

4. \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\sqrt{x}\left(x-y\right)+\sqrt{y}\left(x-y\right)\)

\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

5. \(\sqrt{a^3b}+\sqrt{ab^3}+\sqrt{\left(a+b\right)^2}\)

\(=a\sqrt{ab}+b\sqrt{ab}+\sqrt{a+b}\cdot\sqrt{a+b}\)

\(=\sqrt{ab}\cdot\left(a+b\right)+\sqrt{a+b}\cdot\sqrt{a+b}\)

\(=\sqrt{ab}\cdot\sqrt{\left(a+b\right)^2}+\sqrt{\left(a+b\right)^2}\)

\(=\left|a+b\right|\left(\sqrt{ab}+1\right)\)

25 tháng 6 2019

1. \(a-3\sqrt{a}+2=a-\sqrt{a}-2\sqrt{a}+2=\sqrt{a}\left(\sqrt{a}-1\right)-2\left(\sqrt{a}-1\right)\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)\)

2. \(a+4\sqrt{a}+3=a+3\sqrt{a}+\sqrt{a}+3=\sqrt{a}\left(\sqrt{a}+3\right)+\left(\sqrt{a}+3\right)\)

\(=\left(\sqrt{a}+3\right)\left(\sqrt{a}+1\right)\)

11 tháng 9 2018

với a,b,x,y không âm ta có

a,\(ab+b\sqrt{a}+\sqrt{a}+1\)

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)