K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

\(=x^4-2x^3+5x^2-4x+4+x^2-4x+4\\ =x^4-2x^3+6x^2-8x+8\\ =x^4+4x^2-2x^3-8x+2x^2+8\\ =\left(x^2+4\right)\left(x^2-2x+2\right)\)

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
3 tháng 8 2015

Bài 1 :

\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)

Bài 2 :

 \(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)

\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)

Tick đúng nha 

1 tháng 8 2021

X^2-6+8

8 tháng 1 2017

(x2 - x + 2)2 + (x - 2)2

= x4 - 2x3 + 6x2 - 8x + 8

= (x4 + 4x2) + (- 2x3 - 8x) + (2x2 + 8)

= (x2 + 4)(x2 - 2x + 2)

17 tháng 9 2020

( x2 + x )2 + 3( x2 + x ) + 2

Đặt t = x2 + x

Đa thức đã cho trở thành :

t2 + 3t + 2

= t2 + t + 2t + 2

= t( t + 1 ) + 2( t + 1 )

= ( t + 1 )( t + 2 )

= ( x2 + x + 1 )( x2 + x + 2 )

26 tháng 6 2016

(x2 - x)2 - 2 * (x2 - x) - 15 

đặt x2 - x = a

có: a2 - 2a - 15 = (a2 - 2a + 1) - 16 = (a - 1)2 - 16 = (a - 5) (a + 3) 

thay vào đc:  (x2 - x - 5) (x2 - x +3)

26 tháng 6 2016

đặt x^2 - x = t
phương trình trở thành 
t^2-2t-15
= t^2 - 2t + 1 -16
= (t^2 - 1) - 16
=> (x^2 - x - 1) -16

10 tháng 10 2015

 

(x^2+x)^2-2(x^2+x)-15

=(x2+x)2-2(x2+x)+1-16

=(x2+x-1)2-16

=(x2+x-1+4)(x2+x-1-4)

=(x2+x+3)(x2+x-5)

16 tháng 7 2019

x^2-(x^2-2x+1)+2x-2-1]

=x^2-x^2+2x-1+2x-3

=4x-4=4(x-1)

21 tháng 10 2021

a) \(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

21 tháng 10 2021

b) \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)\)

\(=\left(x+3\right)\left(x+2\right)\)

10 tháng 10 2015

(x2+x+1)(x2+x+2)-12

=(x2+x+1)[(x2+x+1)+1)-12

=(x2+x+1)2+(x2+x+1)-12

=(x2+x+1)2-3.(x2+x+1)+4.(x2+x+1)-12

=(x2+x+1)(x2+x+1-3)+4.(x2+x+1-3)

=(x2+x+1)(x2+x-2)+4.(x2+x-2)

=(x2+x-2)(x2+x+1+4)

=(x2-x+2x-2)(x2+x+5)

=[x.(x-1)+2.(x-1)](x2+x+5)

=(x-1)(x+2)(x2+x+5)

4 tháng 3 2017

(x^2+x+1)(x^2+x+2)-12

Đặt x^2+x+1= a ta có

=a^2+a-12

=a^2-3a+4a-12

=(a^2-3a)+(4a-12)

=a(a-3)+4(a-3)

=(a-3)(a+4)

thay x^2+x+1=a ta được

(x^2+x-2)(x^2+x+5)